On fractal faithfulness and fine fractal properties of random variables with independent -digits
Volume 3, Issue 2 (2016), pp. 119–131
Pub. online: 9 June 2016
Type: Research Article
Open Access
Received
20 May 2016
20 May 2016
Accepted
3 June 2016
3 June 2016
Published
9 June 2016
9 June 2016
Abstract
We develop a new technique to prove the faithfulness of the Hausdorff–Besicovitch dimension calculation of the family $\varPhi ({Q}^{\ast })$ of cylinders generated by ${Q}^{\ast }$-expansion of real numbers. All known sufficient conditions for the family $\varPhi ({Q}^{\ast })$ to be faithful for the Hausdorff–Besicovitch dimension calculation use different restrictions on entries $q_{0k}$ and $q_{(s-1)k}$. We show that these restrictions are of purely technical nature and can be removed. Based on these new results, we study fine fractal properties of random variables with independent ${Q}^{\ast }$-digits.
References
Albeverio, S., Torbin, G.: Fractal properties of singularly continuous probability distributions with independent ${Q}^{\ast }$-digits. Bull. Sci. Math. 129(4), 356–367 (2005). MR2134126. doi:10.1016/j.bulsci.2004.12.001
Albeverio, S., Torbin, G.: On fine fractal properties of generalized infinite Bernoulli convolutions. Bull. Sci. Math. 132(8), 711–727 (2008). MR2474489. doi:10.1016/j.bulsci.2008.03.002
Albeverio, S., Koshmanenko, V., Pratsiovytyi, M., Torbin, G.: On fine structure of singularly continuous probability measures and random variables with independent $\widetilde{Q}$-symbols. Methods Funct. Anal. Topol. 17(2), 97–111 (2011). MR2849470
Albeverio, S., Kondratiev, Yu., Nikiforov, R., Torbin, G.: On fractal properties of non-normal numbers with respect to Rényi f-expansions generated by piecewise linear functions. Bull. Sci. Math. 138(3), 440–455 (2014). MR3206478. doi:10.1016/j.bulsci.2013.10.005
Albeverio, S., Ivanenko, G., Lebid, M., Torbin, G.: On the Hausdorff dimension faithfulness and the Cantor series expansion. Math. Res. Lett., submitted for publication. arXiv:1305.6036
Albeverio, S., Kondratiev, Yu., Nikiforov, R., Torbin, G.: On new fractal phenomena connected with infinite linear IFS. Math. Nachr., submitted for publication. arXiv:1507.05672
Bernardi, M.P., Bondioli, C.: On some dimension problems for self-affine fractals. Z. Anal. Anwend. 18(3), 733–751 (1999). MR1718162. doi:10.4171/ZAA/909
Besicovitch, A.: On the sum of digits of real numbers represented in the dyadic system. Math. Ann. 110(1), 321–330 (1935). MR1512941. doi:10.1007/BF01448030
Billingsley, P.: Hausdorff dimension in probability theory II. Ill. J. Math. 5, 291–198 (1961). MR0120339
Cutler, C.D.: A note on equivalent interval covering systems for Hausdorff dimension on $\mathbb{R}$,. Int. J. Math. Math. Sci. 11(4), 643–650 (1988). MR0959443. doi:10.1155/S016117128800078X
Falconer, K.J.: Fractal Geometry. John Wiley & Sons, New York (1990). MR3236784
Nikiforov, R., Torbin, G.: Fractal properties of random variables with independent $Q_{\infty }$-digits. Theory Probab. Math. Stat. 86, 169–182 (2013). MR2986457. doi:10.1090/S0094-9000-2013-00896-5
Rogers, C.: Hausdorff Measures. Cambridge Univ. Press, London (1970). MR0281862
Torbin, G.: Multifractal analysis of singularly continuous probability measures. Ukr. Math. J. 57(5), 837–857 (2005). MR2209816. doi:10.1007/s11253-005-0233-4
Turbin, A.F., Pratsiovytyi, M.V.: Fractal Sets, Functions, Distributions. Naukova Dumka, Kiev (1992). MR1353239