The paper is devoted to the restricted Oppenheim expansion of real numbers ($\mathit{ROE}$), which includes already known Engel, Sylvester and Lüroth expansions as partial cases. We find conditions under which for almost all (with respect to Lebesgue measure) real numbers from the unit interval their $\mathit{ROE}$-expansion contain arbitrary digit i only finitely many times. Main results of the paper state the singularity (w.r.t. the Lebesgue measure) of the distribution of a random variable with i.i.d. increments of symbols of the restricted Oppenheim expansion. General non-i.i.d. case is also studied and sufficient conditions for the singularity of the corresponding probability distributions are found.
We study properties of distributions of random variables with independent identically distributed symbols of generalized Lüroth series (GLS) expansions (the family of GLS-expansions contains Lüroth expansion and $Q_{\infty }$- and ${G_{\infty }^{2}}$-expansions). To this end, we explore fractal properties of the family of Cantor-like sets $C[\mathit{GLS},V]$ consisting of real numbers whose GLS-expansions contain only symbols from some countable set $V\subset N\cup \{0\}$, and derive exact formulae for the determination of the Hausdorff–Besicovitch dimension of $C[\mathit{GLS},V]$. Based on these results, we get general formulae for the Hausdorff–Besicovitch dimension of the spectra of random variables with independent identically distributed GLS-symbols for the case where all but countably many points from the unit interval belong to the basis cylinders of GLS-expansions.
We develop a new technique to prove the faithfulness of the Hausdorff–Besicovitch dimension calculation of the family $\varPhi ({Q}^{\ast })$ of cylinders generated by ${Q}^{\ast }$-expansion of real numbers. All known sufficient conditions for the family $\varPhi ({Q}^{\ast })$ to be faithful for the Hausdorff–Besicovitch dimension calculation use different restrictions on entries $q_{0k}$ and $q_{(s-1)k}$. We show that these restrictions are of purely technical nature and can be removed. Based on these new results, we study fine fractal properties of random variables with independent ${Q}^{\ast }$-digits.