On singularity of distribution of random variables with independent symbols of Oppenheim expansions
Volume 4, Issue 3 (2017), pp. 273–283
Pub. online: 26 October 2017
Type: Research Article
Open Access
Received
13 August 2017
13 August 2017
Revised
3 October 2017
3 October 2017
Accepted
3 October 2017
3 October 2017
Published
26 October 2017
26 October 2017
Abstract
The paper is devoted to the restricted Oppenheim expansion of real numbers ($\mathit{ROE}$), which includes already known Engel, Sylvester and Lüroth expansions as partial cases. We find conditions under which for almost all (with respect to Lebesgue measure) real numbers from the unit interval their $\mathit{ROE}$-expansion contain arbitrary digit i only finitely many times. Main results of the paper state the singularity (w.r.t. the Lebesgue measure) of the distribution of a random variable with i.i.d. increments of symbols of the restricted Oppenheim expansion. General non-i.i.d. case is also studied and sufficient conditions for the singularity of the corresponding probability distributions are found.
References
Albeverio, S., Torbin, G.: Fractal properties of singularly continuous probability distributions with independent ${q}^{\ast }$-digits. Bulletin des Sciences Mathématiques 4, 356–367 (2005) MR2134126
Albeverio, S., Torbin, G.: On fine fractal properties of generalized infinite Bernoulli convolutions. Bulletin des Sciences Mathématiques 8, 711–727 (2008) MR2474489. doi:10.1016/j.bulsci.2008.03.002
Albeverio, S., Pratsiovytyi, M., Torbin, G.: Fractal probability distributions and transformations preserving the Hausdorff-Besicovitch dimension. Ergodic Theory and Dynamical Systems 1, 1–16 (2004) MR2041258. doi:10.1017/S0143385703000397
Albeverio, S., Pratsiovytyi, M., Torbin, G.: Singular probability distributions and fractal properties of sets of real numbers defined by the asymptotic frequencies of their s-adic digits. Ukr. Math. J. 9, 1361–1370 (2005) MR2216038. doi:10.1007/s11253-006-0001-0
Albeverio, S., Pratsiovytyi, M., Torbin, G.: Topological and fractal properties of subsets of real numbers which are not normal. Bulletin des Sciences Mathématiques 8, 615–630 (2005) MR2166730. doi:10.1016/j.bulsci.2004.12.004
Albeverio, S., Koshmanenko, V., Pratsiovytyi, M., Torbin, G.: Spectral properties of image measures under the infinite conflict interactions. Positivity 1, 39–49 (2006) MR2223583. doi:10.1007/s11117-005-0012-3
Albeverio, S., Koshmanenko, V., Pratsiovytyi, M., Torbin, G.: On fine structure of singularly continuous probability measures and random variables with independent $\widetilde{Q}$-symbols. Meth. of Func. An. Top. 2, 97–111 (2011) MR2849470
Albeverio, S., Kondratiev, Y., Nikiforov, R., Torbin, G.: On fractal properties of non-normal numbers with respect to Rényi f-expansions generated by piecewise linear functions. Bulletin des Sciences Mathématiques 3, 440–455 (2014) MR3206478. doi:10.1016/j.bulsci.2013.10.005
Albeverio, S., Garko, I., Ibragim, M., Torbin, G.: Non-normal numbers: Full Hausdorff dimensionality vs zero dimensionality. Bulletin des Sciences Mathématiques 2, 1–19 (2017) MR3614114. doi:10.1016/j.bulsci.2016.04.001
Albeverio, S., Kondratiev, Y., Nikiforov, R., Torbin, G.: On new fractal phenomena connected with infinite linear ifs. Math. Nachr. 8-9, 1163–1176 (2017) MR3666991
Albeverio, S., Goncharenko, Y., Pratsiovytyi, M., Torbin, G.: Convolutions of distributions of random variables with independent binary digits. Random Operators and Stochastic Equations 1, 89–99 (2007) MR2316190. doi:10.1515/ROSE.2007.006
Fan, A.H., Wu, J.: Metric properties and exceptional sets of the oppenheim expansions over the field of laurent series. Constructive Approximation 4, 465–495 (2004) MR2078082
Galambos, J.: The ergodic properties of the denominators in the Oppenheim expansion of real numbers into infinite series of rationals. The Quarterly Journal of Mathematics 2, 177–191 (1970) MR0258777. doi:10.1093/qmath/21.2.177
Garko, I., Nikiforov, R., Torbin, G.: On g-isomorphism of probabilistic and dimensional theories of real numbers and fractal faithfulness of systems of coverings. Probability theory and Mathematical Statistics 94, 16–35 (2016) MR3553451
Jessen, B., Wintner, A.: Distribution function and Riemann zeta-function. Trans. Amer. Math. Soc. 38, 48–88 (1938) MR1501802. doi:10.2307/1989728
Peres, Y., Schlag, W., Solomyak, B.: Sixty years of Bernoulli convolutions. Progress in Probab. 46, 39–65 (2000) MR1785620
Solomyak, B.: On the random series $\sum \pm {\lambda }^{n}$ (an Erdös problem). Ann. of Math. 3, 611–625 (1995) MR1356783. doi:10.2307/2118556
Torbin, G.: Multifractal analysis of singularly continuous probability measures. Ukrainian Math. J. 5, 837–857 (2005) MR2209816. doi:10.1007/s11253-005-0233-4