The paper is devoted to the restricted Oppenheim expansion of real numbers ($\mathit{ROE}$), which includes already known Engel, Sylvester and Lüroth expansions as partial cases. We find conditions under which for almost all (with respect to Lebesgue measure) real numbers from the unit interval their $\mathit{ROE}$-expansion contain arbitrary digit i only finitely many times. Main results of the paper state the singularity (w.r.t. the Lebesgue measure) of the distribution of a random variable with i.i.d. increments of symbols of the restricted Oppenheim expansion. General non-i.i.d. case is also studied and sufficient conditions for the singularity of the corresponding probability distributions are found.
We develop a new technique to prove the faithfulness of the Hausdorff–Besicovitch dimension calculation of the family $\varPhi ({Q}^{\ast })$ of cylinders generated by ${Q}^{\ast }$-expansion of real numbers. All known sufficient conditions for the family $\varPhi ({Q}^{\ast })$ to be faithful for the Hausdorff–Besicovitch dimension calculation use different restrictions on entries $q_{0k}$ and $q_{(s-1)k}$. We show that these restrictions are of purely technical nature and can be removed. Based on these new results, we study fine fractal properties of random variables with independent ${Q}^{\ast }$-digits.