Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 3, Issue 2 (2016)
  4. Asymptotic behavior of homogeneous addit ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Asymptotic behavior of homogeneous additive functionals of the solutions of Itô stochastic differential equations with nonregular dependence on parameter
Volume 3, Issue 2 (2016), pp. 191–208
Grigorij Kulinich   Svitlana Kushnirenko   Yuliia Mishura  

Authors

 
Placeholder
https://doi.org/10.15559/16-VMSTA58
Pub. online: 4 July 2016      Type: Research Article      Open accessOpen Access

Received
28 May 2016
Revised
17 June 2016
Accepted
17 June 2016
Published
4 July 2016

Abstract

We study the asymptotic behavior of mixed functionals of the form $I_{T}(t)=F_{T}(\xi _{T}(t))+{\int _{0}^{t}}g_{T}(\xi _{T}(s))\hspace{0.1667em}d\xi _{T}(s)$, $t\ge 0$, as $T\to \infty $. Here $\xi _{T}(t)$ is a strong solution of the stochastic differential equation $d\xi _{T}(t)=a_{T}(\xi _{T}(t))\hspace{0.1667em}dt+dW_{T}(t)$, $T>0$ is a parameter, $a_{T}=a_{T}(x)$ are measurable functions such that $\left|a_{T}(x)\right|\le C_{T}$ for all $x\in \mathbb{R}$, $W_{T}(t)$ are standard Wiener processes, $F_{T}=F_{T}(x)$, $x\in \mathbb{R}$, are continuous functions, $g_{T}=g_{T}(x)$, $x\in \mathbb{R}$, are locally bounded functions, and everything is real-valued. The explicit form of the limiting processes for $I_{T}(t)$ is established under very nonregular dependence of $g_{T}$ and $a_{T}$ on the parameter T.

References

[1] 
Friedman, A.: Limit behavior of solutions of stochastic differential equations. Trans. Am. Math. Soc. 170, 359–384 (1972). MR0378118
[2] 
Gikhman, I.I., Skorokhod, A.V.: Stochastic Differential Equations. Springer, Berlin, New York (1972).
[3] 
Krylov, N.V.: On Ito’s stochastic integral equations. Theory Probab. Appl. 14(2), 330–336 (1969). MR0270462
[4] 
Kulinich, G.L.: On the limit behavior of the distribution of the solution of a stochastic diffusion equation. Theory Probab. Appl. 12(3), 497–499 (1967). MR0215365
[5] 
Kulinich, G.L.: Limit behavior of the distribution of the solution of a stochastic diffusion equation. Ukr. Math. J. 19, 231–235 (1968). MR0215365
[6] 
Kulinich, G.L.: Limit distributions for functionals of integral type of unstable diffusion processes. Theory Probab. Math. Stat. 11, 82–86 (1976).
[7] 
Kulinich, G.L.: Some limit theorems for a sequence of Markov chains. Theory Probab. Math. Stat. 12, 79–92 (1976).
[8] 
Kulinich, G.L.: Limit theorems for one-dimensional stochastic differential equations with nonregular dependence of the coefficients on a parameter. Theory Probab. Math. Stat. 15, 101–115 (1978).
[9] 
Kulinich, G.L.: On the asymptotic behavior of the solution of one dimensional stochastic diffusion equation. In: Lect. Notes Control Inf. Sci., vol. 25, pp. 334–343. Springer-Verlag (1980). MR0609199
[10] 
Kulinich, G.L.: On necessary and sufficient conditions for convergence of solutions to one-dimensional stochastic diffusion equations with a nonregular dependence of the coefficients on a parameter. Theory Probab. Appl. 27(4), 856–862 (1983). MR0681473
[11] 
Kulinich, G.L.: On necessary and sufficient conditions for convergence of homogeneous additive functionals of diffusion processes. In: Arato, M., Yadrenko, M., (eds.) Proceedings of the Second Ukrainian–Hungarian Conference: New Trends in Probability and Mathematical Statistics. TViMS, vol. 2, pp. 381–390 (1995).
[12] 
Kulinich, G.L., Kaskun, E.P.: On the asymptotic behavior of solutions of one-dimensional Ito’s stochastic differential equations with singularity points. Theory Stoch. Process. 4(20), 189–197 (1998). MR2026628
[13] 
Kulinich, G.L., Kushnirenko, S.V., Mishura, Y.S.: Asymptotic behavior of the integral functionals for unstable solutions of one-dimensional Ito stochastic differential equations. Theory Probab. Math. Stat. 89, 93–105 (2013). MR3235178. doi:10.1090/s0094-9000-2015-00938-8
[14] 
Kulinich, G.L., Kushnirenko, S.V., Mishura, Y.S.: Asymptotic behavior of the martingale type integral functionals for unstable solutions to stochastic differential equations. Theory Probab. Math. Stat. 90, 115–126 (2015). MR3242024
[15] 
Kulinich, G.L., Kushnirenko, S.V., Mishura, Y.S.: Limit behavior of functionals of diffusion type processes. Theory Probab. Math. Stat. 92 (2016), to appear.
[16] 
Prokhorov, Yu.V.: Convergence of random processes and limit theorems in probability theory. Theory Probab. Appl. 1(2), 157–214 (1956). MR0084896
[17] 
Skorokhod, A.V.: Studies in the Theory of Random Processes. Addison–Wesley Publ. Co., Inc., Reading, MA (1965). MR0185620
[18] 
Skorokhod, A.V., Slobodenyuk, N.P.: Limit Theorems for Random Walks. Naukova Dumka, Kiev (1970) (in Russian). MR0282419
[19] 
Veretennikov, A.Y.: On the strong solutions of stochastic differential equations. Theory Probab. Appl. 24(2), 354–366 (1979). MR0532447

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2016 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Diffusion-type processes asymptotic behavior of additive functionals nonregular dependence on the parameter

MSC2010
60H10 60J60

Metrics
since March 2018
526

Article info
views

265

Full article
views

309

PDF
downloads

149

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy