The generalised sine random point field arises from the scaling limit at the origin of the eigenvalues of the generalised Gaussian ensembles. We solve an infinite-dimensional stochastic differential equation (ISDE) describing an infinite number of interacting Brownian particles which is reversible with respect to the generalised sine random point field. Moreover, finite particle approximation of the ISDE is shown, that is, a solution to the ISDE is approximated by solutions to finite-dimensional SDEs describing finite-particle systems related to the generalised Gaussian ensembles.
The asymptotic behavior, as $T\to \infty $, of some functionals of the form $I_{T}(t)=F_{T}(\xi _{T}(t))+{\int _{0}^{t}}g_{T}(\xi _{T}(s))\hspace{0.1667em}dW_{T}(s)$, $t\ge 0$ is studied. Here $\xi _{T}(t)$ is the solution to the time-inhomogeneous Itô stochastic differential equation
$T>0$ is a parameter, $a_{T}(t,x),x\in \mathbb{R}$ are measurable functions, $|a_{T}(t,x)|\le C_{T}$ for all $x\in \mathbb{R}$ and $t\ge 0$, $W_{T}(t)$ are standard Wiener processes, $F_{T}(x),x\in \mathbb{R}$ are continuous functions, $g_{T}(x),x\in \mathbb{R}$ are measurable locally bounded functions, and everything is real-valued. The explicit form of the limiting processes for $I_{T}(t)$ is established under nonregular dependence of $a_{T}(t,x)$ and $g_{T}(x)$ on the parameter T.
where the sequence $\{a_{n}\}$ converges in some sense to $(c_{-}\mathbb{1}_{x<0}+c_{+}\mathbb{1}_{x>0})/x+\gamma \delta _{0}$. Here $\delta _{0}$ is the Dirac delta function concentrated at zero. A limit of $\{X_{n}\}$ may be a Bessel process, a skew Bessel process, or a mixture of Bessel processes.
We study the asymptotic behavior of mixed functionals of the form $I_{T}(t)=F_{T}(\xi _{T}(t))+{\int _{0}^{t}}g_{T}(\xi _{T}(s))\hspace{0.1667em}d\xi _{T}(s)$, $t\ge 0$, as $T\to \infty $. Here $\xi _{T}(t)$ is a strong solution of the stochastic differential equation $d\xi _{T}(t)=a_{T}(\xi _{T}(t))\hspace{0.1667em}dt+dW_{T}(t)$, $T>0$ is a parameter, $a_{T}=a_{T}(x)$ are measurable functions such that $\left|a_{T}(x)\right|\le C_{T}$ for all $x\in \mathbb{R}$, $W_{T}(t)$ are standard Wiener processes, $F_{T}=F_{T}(x)$, $x\in \mathbb{R}$, are continuous functions, $g_{T}=g_{T}(x)$, $x\in \mathbb{R}$, are locally bounded functions, and everything is real-valued. The explicit form of the limiting processes for $I_{T}(t)$ is established under very nonregular dependence of $g_{T}$ and $a_{T}$ on the parameter T.
Using martingale methods, we provide bounds for the entropy of a probability measure on ${\mathbb{R}}^{d}$ with the right-hand side given in a certain integral form. As a corollary, in the one-dimensional case, we obtain a weighted log-Sobolev inequality.
In this article, we study homogeneous transient diffusion processes. We provide the basic distributions of their local times. It helps to get exact formulas and upper bounds for the moments, exponential moments, and potentials of integral functionals of transient diffusion processes. Some of the results generalize the corresponding results of Salminen and Yor for the Brownian motion with drift.