Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 9, Issue 1 (2022)
  4. Interacting Brownian motions in infinite ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Cited by
  • More
    Article info Full article Cited by

Interacting Brownian motions in infinite dimensions related to the origin of the spectrum of random matrices
Volume 9, Issue 1 (2022), pp. 89–122
Yosuke Kawamoto ORCID icon link to view author Yosuke Kawamoto details  

Authors

 
Placeholder
https://doi.org/10.15559/21-VMSTA193
Pub. online: 10 January 2022      Type: Research Article      Open accessOpen Access

Received
11 August 2021
Revised
8 November 2021
Accepted
8 November 2021
Published
10 January 2022

Abstract

The generalised sine random point field arises from the scaling limit at the origin of the eigenvalues of the generalised Gaussian ensembles. We solve an infinite-dimensional stochastic differential equation (ISDE) describing an infinite number of interacting Brownian particles which is reversible with respect to the generalised sine random point field. Moreover, finite particle approximation of the ISDE is shown, that is, a solution to the ISDE is approximated by solutions to finite-dimensional SDEs describing finite-particle systems related to the generalised Gaussian ensembles.

References

[1] 
Akemann, G., Damgaard, P.H., Magnea, U., Nishigaki, S.: Universality of random matrices in the microscopic limit and the Dirac operator spectrum. Nucl. Phys. B 487(3), 721–738 (1997). MR1432823. https://doi.org/10.1016/S0550-3213(96)00713-4
[2] 
Bufetov, A.I., Dymov, A.V., Osada, H.: The logarithmic derivative for point processes with equivalent Palm measures. J. Math. Soc. Jpn. 71(2), 451–469 (2019). MR3943446. https://doi.org/10.2969/jmsj/78397839
[3] 
Bufetov, A.I., Qiu, Y., Shamov, A.: Kernels of conditional determinantal measures and the Lyons–Peres completeness conjecture. J. Eur. Math. Soc. 23(5), 1477–1519 (2021). MR4244512. https://doi.org/10.4171/JEMS/1038
[4] 
Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions Cambridge University Press, Cambridge (2010). MR2723248
[5] 
Erdélyi, A.: Asymptotic forms for Laguerre polynomials. J. Indian Math. Soc. (N.S.) 24(1960), 235–250 (1961). MR0123751
[6] 
Forrester, P.J.: Log-Gases and Random Matrices. London Mathematical Society Monographs. Princeton University Press, Princeton (2010). MR2641363. https://doi.org/10.1515/9781400835416
[7] 
Fritz, J.: Gradient dynamics of infinite point systems. Ann. Probab. 15, 478–514 (1987). MR0885128
[8] 
Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, 2nd edn. Walter de Gruyter, Berlin (2011). MR2778606
[9] 
Honda, R., Osada, H.: Infinite-dimensional stochastic differential equations related to the Bessel random point fields. Stoch. Process. Appl. 125(10), 3801–3822 (2015). MR3373304. https://doi.org/10.1016/j.spa.2015.05.005
[10] 
Kanzieper, E., Freilikher, V.: Random matrix models with log-singular level confinement: method of fictitious fermions. Philos. Mag. B 77(5), 1161–1172 (1998). https://doi.org/10.1080/13642819808205006
[11] 
Katori, M., Tanemura, H.: Markov property of determinantal processes with extended sine, Airy, and Bessel kernels. Markov Process. Relat. Fields 17(4), 541–580 (2011). MR2918121
[12] 
Kawamoto, Y., Osada, H.: Finite-particle approximations for interacting Brownian particles with logarithmic potentials. J. Math. Soc. Jpn. 70(3), 921–952 (2018). MR3830792. https://doi.org/10.2969/jmsj/75717571
[13] 
Kawamoto, Y., Osada, H., Tanemura, H.: Uniqueness of Dirichlet forms related to infinite systems of interacting Brownian motions. Potential Anal. (2020). Published online. MR4341065. https://doi.org/10.1007/s11118-020-09872-2
[14] 
Kawamoto, Y., Osada, H., Tanemura, H.: Infinite-dimensional stochastic differential equations and tail σ-fields II: the IFC condition. J. Math. Soc. Japan. to appear. MR4126938. https://doi.org/10.1007/s00440-020-00981-y
[15] 
Kuijlaars, A.B.J., Vanlessen, M.: Universality for eigenvalue correlations at the origin of the spectrum. Commun. Math. Phys. 243(1), 163–191 (2003). MR2020225. https://doi.org/10.1007/s00220-003-0960-z
[16] 
Lang, R.: Unendlich-dimensionale Wienerprocesse mit Wechselwirkung I. Z. Wahrscheinlichkeitstheor. Verw. Geb. 38, 55–72 (1977). MR0431435. https://doi.org/10.1007/BF00534170
[17] 
Lang, R.: Unendlich-dimensionale Wienerprocesse mit Wechselwirkung II. Z. Wahrscheinlichkeitstheor. Verw. Geb. 39, 277–299 (1978). MR0431435. https://doi.org/10.1007/BF01877496
[18] 
Lyons, R.: A note on tail triviality for determinantal point processes. Electron. Commun. Probab. 23, 1–3 (2018). MR3866045. https://doi.org/10.1214/18-ECP175
[19] 
Ma, Z.-M., Röckner, M.: Introduction to the Theory of (Non-symmetric) Dirichlet Forms. Springer, Berlin (1992). MR1214375. https://doi.org/10.1007/978-3-642-77739-4
[20] 
Nagao, T., Slevin, K.: Nonuniversal correlations for random matrix ensembles. J. Math. Phys. 34(5), 2075–2085 (1993). MR1214509. https://doi.org/10.1063/1.530157
[21] 
Olver, F.W.J.: Asymptotics and Special Functions. A K Peters, Ltd., Wellesley, MA (1997). Reprint of the 1974 original, AKP Classics MR1429619
[22] 
Osada, H.: Dirichlet form approach to infinite-dimensional Wiener processes with singular interactions. Commun. Math. Phys. 176, 117–131 (1996). MR1372820. https://doi.org/10.1007/BF02099365
[23] 
Osada, H.: Non-collision and collision properties of Dyson’s model in infinite dimensions and other stochastic dynamics whose equilibrium states are determinantal random point fields. In: Funaki, T., Osada, H. (eds.) Stochastic Analysis on Large Scale Interacting Systems. Advanced Studies in Pure Mathematics, vol. 39, pp. 325–343 (2004). MR2073339. https://doi.org/10.2969/aspm/03910325
[24] 
Osada, H.: Tagged particle processes and their non-explosion criteria. J. Math. Soc. Jpn. 62(3), 867–894 (2010). MR2648065. https://doi.org/10.2969/jmsj/06230867
[25] 
Osada, H.: Infinite-dimensional stochastic differential equations related to random matrices. Probab. Theory Relat. Fields 153, 471–509 (2012). MR2948684. https://doi.org/10.1007/s00440-011-0352-9
[26] 
Osada, H.: Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials. Ann. Probab. 41, 1–49 (2013). MR3059192. https://doi.org/10.1214/11-AOP736
[27] 
Osada, H.: Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials II: airy random point field. Stoch. Process. Appl. 123, 813–838 (2013). MR3005007. https://doi.org/10.1016/j.spa.2012.11.002
[28] 
Osada, H., Osada, S.: Discrete approximations of determinantal point processes on continuous spaces: tree representations and tail triviality. J. Stat. Phys. 170, 421–435 (2018). MR3744393. https://doi.org/10.1007/s10955-017-1928-2
[29] 
Osada, H., Tanemura, H.: Infinite-dimensional stochastic differential equations and tail σ-fields. Probab. Theory Relat. Fields 177, 1137–1242 (2020). MR4126938. https://doi.org/10.1007/s00440-020-00981-y
[30] 
Shirai, T., Takahashi, Y.: Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point process. J. Funct. Anal. 205, 414–463 (2003). MR2018415. https://doi.org/10.1016/S0022-1236(03)00171-X
[31] 
Tanemura, H.: A system of infinitely many mutually reflecting Brownian balls in ${\mathbb{R}^{d}}$. Probab. Theory Relat. Fields 104, 399–426 (1996). MR1376344. https://doi.org/10.1007/BF01213687
[32] 
Tsai, L.-C.: Infinite dimensional stochastic differential equations for Dyson’s model. Probab. Theory Relat. Fields 166, 801–850 (2016). MR3568040. https://doi.org/10.1007/s00440-015-0672-2

Full article Cited by PDF XML
Full article Cited by PDF XML

Copyright
© 2022 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Interacting Brownian motions random matrices infinite-dimensional stochastic differential equations infinite particle systems

MSC2010
60K35 60B20 60J60 60H10 82B21

Funding
This work was supported by JSPS KAKENHI Grant Numbers 21K13812 and 16H06338.

Metrics
since March 2018
511

Article info
views

301

Full article
views

300

PDF
downloads

129

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy