Recurrence times and the number of renewals in $(0,t]$ are fundamental quantities in renewal theory. Firstly, it is proved that the upper orthant order for the pair of the forward and backward recurrence times may result in NWUC (NBUC) interarrivals. It is also demonstrated that, under DFR interarrival times, the backward recurrence time is smaller than the forward recurrence time in the hazard rate order. Lastly, the sign of the covariance between the forward recurrence time and the number of renewals in $(0,t]$ at a fixed time point t and when $t\to \infty $ is studied assuming that the interarrival distribution belongs to certain ageing classes.
A class of Cannings models is studied, with population size N having a mixed multinomial offspring distribution with random success probabilities ${W_{1}},\dots ,{W_{N}}$ induced by independent and identically distributed positive random variables ${X_{1}},{X_{2}},\dots $ via ${W_{i}}:={X_{i}}/{S_{N}}$, $i\in \{1,\dots ,N\}$, where ${S_{N}}:={X_{1}}+\cdots +{X_{N}}$. The ancestral lineages are hence based on a sampling with replacement strategy from a random partition of the unit interval into N subintervals of lengths ${W_{1}},\dots ,{W_{N}}$. Convergence results for the genealogy of these Cannings models are provided under assumptions that the tail distribution of ${X_{1}}$ is regularly varying. In the limit several coalescent processes with multiple and simultaneous multiple collisions occur. The results extend those obtained by Huillet [J. Math. Biol. 68 (2014), 727–761] for the case when ${X_{1}}$ is Pareto distributed and complement those obtained by Schweinsberg [Stoch. Process. Appl. 106 (2003), 107–139] for models where sampling is performed without replacement from a supercritical branching process.
In the present paper the change of measures technique for compound mixed renewal processes, developed in Tzaninis and Macheras [ArXiv:2007.05289 (2020) 1–25], is applied to the ruin problem in order to obtain an explicit formula for the probability of ruin in a mixed renewal risk model and to find upper and lower bounds for it.
The paper presents the study on the existence and uniqueness (strong and in law) of a class of non-Markovian SDEs whose drift contains the derivative in the sense of distributions of a continuous function.
The generalised sine random point field arises from the scaling limit at the origin of the eigenvalues of the generalised Gaussian ensembles. We solve an infinite-dimensional stochastic differential equation (ISDE) describing an infinite number of interacting Brownian particles which is reversible with respect to the generalised sine random point field. Moreover, finite particle approximation of the ISDE is shown, that is, a solution to the ISDE is approximated by solutions to finite-dimensional SDEs describing finite-particle systems related to the generalised Gaussian ensembles.