Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 9, Issue 1 (2022)
  4. On path-dependent SDEs involving distrib ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Cited by
  • More
    Article info Full article Cited by

On path-dependent SDEs involving distributional drifts
Volume 9, Issue 1 (2022), pp. 65–87
Alberto Ohashi   Francesco Russo ORCID icon link to view author Francesco Russo details   Alan Teixeira  

Authors

 
Placeholder
https://doi.org/10.15559/21-VMSTA197
Pub. online: 3 January 2022      Type: Research Article      Open accessOpen Access

Received
25 April 2021
Revised
9 December 2021
Accepted
9 December 2021
Published
3 January 2022

Abstract

The paper presents the study on the existence and uniqueness (strong and in law) of a class of non-Markovian SDEs whose drift contains the derivative in the sense of distributions of a continuous function.

References

[1] 
Bass, R.F., Chen, Z.-Q.: Stochastic differential equations for Dirichlet processes. Probab. Theory Relat. Fields 121(3), 422–446 (2001). MR1867429. https://doi.org/10.1007/s004400100151
[2] 
Bass, R.F., Chen, Z.-Q.: Brownian motion with singular drift. Ann. Probab. 31(2), 791–817 (2003). MR1964949. https://doi.org/10.1214/aop/1048516536
[3] 
Blei, S., Engelbert, H.J.: One-dimensional stochastic differential equations with generalized and singular drift. Stoch. Process. Appl. 123(12), 4337–4372 (2013). MR3096356. https://doi.org/10.1016/j.spa.2013.06.014
[4] 
Brox, Th.: A one-dimensional diffusion process in a Wiener medium. Ann. Probab. 14(4), 1206–1218 (1986). MR0866343
[5] 
Cannizzaro, G., Chouk, K.: Multidimensional SDEs with singular drift and universal construction of the polymer measure with white noise potential. Ann. Probab. 46(3), 1710–1763 (2018). 05. MR3785598. https://doi.org/10.1214/17-AOP1213
[6] 
Castrequini, R.A., Russo, F.: Path dependent equations driven by Hölder processes. Stoch. Anal. Appl. 37(3), 480–498 (2019). MR3946622. https://doi.org/10.1080/07362994.2019.1585263
[7] 
Delarue, F., Diel, R.: Rough paths and 1d SDE with a time dependent distributional drift: application to polymers. Probab. Theory Relat. Fields 165, 1–63 (2016). MR3500267. https://doi.org/10.1007/s00440-015-0626-8
[8] 
Dereudre, D., Roelly, S.: Path-dependent infinite-dimensional SDE with non-regular drift: An existence result. Ann. Inst. Henri Poincaré Probab. Stat. 53(2), 641–657 (2017). MR3634268. https://doi.org/10.1214/15-AIHP728
[9] 
Engelbert, H.-J., Schmidt, W.: On one-dimensional stochastic differential equations with generalized drift. In: Stochastic differential systems, Marseille-Luminy, 1984. Lecture Notes in Control and Inform. Sci., vol. 69, pp. 143–155. Springer, Berlin (1985). MR0798317. https://doi.org/10.1007/BFb0005069
[10] 
Engelbert, H.-J., Wolf, J.: Strong Markov local Dirichlet processes and stochastic differential equations. Teor. Veroâtn. Primen. 43(2), 331–348 (1998). MR1679006. https://doi.org/10.4213/tvp1468
[11] 
Flandoli, F., Issoglio, E., Russo, F.: Multidimensional SDEs with distributional coefficients. Trans. Am. Math. Soc. 369, 1665–1688 (2017). MR3581216. https://doi.org/10.1090/tran/6729
[12] 
Flandoli, F., Russo, F., Wolf, J.: Some SDEs with distributional drift. I. General calculus. Osaka J. Math. 40(2), 493–542 (2003). MR1988703
[13] 
Flandoli, F., Russo, F., Wolf, J.: Some SDEs with distributional drift. II. Lyons-Zheng structure, Itô’s formula and semimartingale characterization. Random Oper. Stoch. Equ. 12(2), 145–184 (2004). MR2065168. https://doi.org/10.1163/156939704323074700
[14] 
Frikha, N., Li, L.: Weak uniqueness and density estimates for SDEs with coefficients depending on some path-functionals. ArXiv preprint (2019). 1707.01295. MR4076774. https://doi.org/10.1214/19-AIHP992
[15] 
Hu, Y., Shi, Z., Yor, M.: Rates of convergences of diffusions with driftted Brownian potentials. Transl. Am. Math. Soc. 351(10), 3915–3934 (1999). MR1637078. https://doi.org/10.1090/S0002-9947-99-02421-6
[16] 
Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus, 2nd edn. Graduate Texts in Mathematics, vol. 113. Springer, New York (1991). MR1121940. https://doi.org/10.1007/978-1-4612-0949-2
[17] 
Mohammed, S-E.A.: Stochastic functional differential equations, vol. 99. Pitman Advanced Publishing Program (1984). MR0754561
[18] 
Ohashi, A., Russo, F., Teixeira, A.: SDEs for Bessel processes in low dimension and path-dependent extensions (2020). Preprint.
[19] 
Portenko, N.I.: Generalized diffusion processes. Translations of Mathematical Monographs, vol. 83. American Mathematical Society, Providence, RI (1990). Translated from the Russian by H. H. McFaden. MR1104660. https://doi.org/10.1090/mmono/083
[20] 
Rogers, L.C.G., Williams, D.: Diffusions, Markov processes, and Martingales. Cambridge University Press (2000). MR1780932. https://doi.org/10.1017/CBO9781107590120
[21] 
Russo, F., Trutnau, G.: About a construction and some analysis of time inhomogeneous diffusions on monotonely moving domains. J. Funct. Anal. 221(1), 37–82 (2005). MR2124897. https://doi.org/10.1016/j.jfa.2004.08.007
[22] 
Russo, F., Trutnau, G.: Some parabolic PDEs whose drift is an irregular random noise in space. Ann. Probab. 35(6), 2213–2262 (2007). MR2353387. https://doi.org/10.1214/009117906000001178
[23] 
Russo, F., Vallois, P.: The generalized covariation process and Itô formula. Stoch. Process. Appl. 59(1), 81–104 (1995). MR1350257. https://doi.org/10.1016/0304-4149(95)93237-A
[24] 
Scheutzow, M.: Stochastic delay equations. Lecture Notes, CIMPA School (2018)
[25] 
Seignourel, P.: Discrete schemes for processes in random media. Probab. Theory Relat. Fields 118(3), 293–322 (2000). MR1800534. https://doi.org/10.1007/PL00008743
[26] 
Stroock, D.W., Varadhan, S.R.S.: Multidimensional diffusion processes. Classics in Mathematics. Springer, Berlin (2006). Reprint of the 1997 edition. MR2190038
[27] 
Zvonkin, A.K.: A transformation of the phase space of a diffusion process that will remove the drift. Mat. Sb. 93(135), 129–149 (1974). 152. MR0336813

Full article Cited by PDF XML
Full article Cited by PDF XML

Copyright
© 2022 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
SDEs with distributional drift path-dependent stochastic differential equations

MSC2010
60G99 60H10 60H15

Funding
The research related to this paper was financially supported by the Regional Program MATH-AmSud 2018 grant 88887.197425/2018-00. A.O. acknowledges the financial support of CNPq Bolsa de Produtividade de Pesquisa grant 303443/2018-9.

Metrics
since March 2018
514

Article info
views

379

Full article
views

430

PDF
downloads

129

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy