The paper presents the study on the existence and uniqueness (strong and in law) of a class of non-Markovian SDEs whose drift contains the derivative in the sense of distributions of a continuous function.
The generalized mean-square fractional integrals ${\mathcal{J}_{\rho ,\lambda ,u+;\omega }^{\sigma }}$ and ${\mathcal{J}_{\rho ,\lambda ,v-;\omega }^{\sigma }}$ of the stochastic process X are introduced. Then, for Jensen-convex and strongly convex stochastic proceses, the generalized fractional Hermite–Hadamard inequality is establish via generalized stochastic fractional integrals.