On generalized stochastic fractional integrals and related inequalities
Volume 5, Issue 4 (2018), pp. 471–481
Pub. online: 24 September 2018
Type: Research Article
Open Access
Received
29 May 2018
29 May 2018
Revised
13 September 2018
13 September 2018
Accepted
13 September 2018
13 September 2018
Published
24 September 2018
24 September 2018
Abstract
The generalized mean-square fractional integrals ${\mathcal{J}_{\rho ,\lambda ,u+;\omega }^{\sigma }}$ and ${\mathcal{J}_{\rho ,\lambda ,v-;\omega }^{\sigma }}$ of the stochastic process X are introduced. Then, for Jensen-convex and strongly convex stochastic proceses, the generalized fractional Hermite–Hadamard inequality is establish via generalized stochastic fractional integrals.
References
Agahi, H., Babakhani, A.: On fractional stochastic inequalities related to Hermite–Hadamard and Jensen types for convex stochastic processes. Aequationes mathematicae 90(5), 1035–1043 (2016) MR3547706. https://doi.org/10.1007/s00010-016-0425-z
Hafiz, F.M.: The fractional calculus for some stochastic processes. Stochastic analysis and applications 22(2), 507–523 (2004) MR2038026. https://doi.org/10.1081/SAP-120028609
Kotrys, D.: Hermite–Hadamard inequality for convex stochastic processes. Aequationes mathematicae 83(1), 143–151 (2012) MR2885506. https://doi.org/10.1007/s00010-011-0090-1
Kotrys, D.: Remarks on strongly convex stochastic processes. Aequationes mathematicae 86(1–2), 91–98 (2013) MR3094634. https://doi.org/10.1007/s00010-012-0163-9
Luo, M.-J., Raina, R.K.: A note on a class of convolution integral equations. Honam Math. J 37(4), 397–409 (2015) MR3445221. https://doi.org/10.5831/HMJ.2015.37.4.397
Nikodem, K.: On convex stochastic processes. Aequationes mathematicae 20(1), 184–197 (1980) MR0577487. https://doi.org/10.1007/BF02190513
Parmar, R.K., Luo, M., Raina, R.K.: On a multivariable class of Mittag-Leffler type functions. Journal of Applied Analysis and Computation 6(4), 981–999 (2016) MR3502352
Sarikaya, M.Z., Yaldiz, H., Budak, H.: Some integral inequalities for convex stochastic processes. Acta Mathematica Universitatis Comenianae 85(1), 155–164 (2016) MR3456531
Skowroński, A.: On some properties ofj-convex stochastic processes. Aequationes Mathematicae 44(2), 249–258 (1992) MR1181272. https://doi.org/10.1007/BF01830983