Asymptotic genealogies for a class of generalized Wright–Fisher models
Volume 9, Issue 1 (2022), pp. 17–43
Pub. online: 15 December 2021
Type: Research Article
Open Access
Received
8 March 2021
8 March 2021
Revised
30 September 2021
30 September 2021
Accepted
27 November 2021
27 November 2021
Published
15 December 2021
15 December 2021
Abstract
A class of Cannings models is studied, with population size N having a mixed multinomial offspring distribution with random success probabilities ${W_{1}},\dots ,{W_{N}}$ induced by independent and identically distributed positive random variables ${X_{1}},{X_{2}},\dots $ via ${W_{i}}:={X_{i}}/{S_{N}}$, $i\in \{1,\dots ,N\}$, where ${S_{N}}:={X_{1}}+\cdots +{X_{N}}$. The ancestral lineages are hence based on a sampling with replacement strategy from a random partition of the unit interval into N subintervals of lengths ${W_{1}},\dots ,{W_{N}}$. Convergence results for the genealogy of these Cannings models are provided under assumptions that the tail distribution of ${X_{1}}$ is regularly varying. In the limit several coalescent processes with multiple and simultaneous multiple collisions occur. The results extend those obtained by Huillet [J. Math. Biol. 68 (2014), 727–761] for the case when ${X_{1}}$ is Pareto distributed and complement those obtained by Schweinsberg [Stoch. Process. Appl. 106 (2003), 107–139] for models where sampling is performed without replacement from a supercritical branching process.
References
Athreya, K.B.: Rates of decay for the survival probability of a mutant gene. J. Math. Biol. 30(6), 577–581 (1992). MR1173109
Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1987). MR0898871
Bingham, N.H., Doney, R.A.: Asymptotic properties of supercritical branching processes. I. The Galton–Watson process. Adv. Appl. Probab. 6(4), 711–731 (1974). MR0362525
Boenkost, F., González Casanova, A., Pokalyuk, C., Wakolbinger, A.: Haldane’s formula in Cannings models: the case of moderately weak selection. Electron. J. Probab. 26 (Paper no. 4), 1–36 (2021). MR4216517
Boenkost, F., González Casanova, A., Pokalyuk, C., Wakolbinger, A.: Haldane’s formula in Cannings models: the case of moderately strong selection. J. Math. Biol. 83(6–7), Article number 70 (2021). 31 pages. MR4348421
Cannings, C.: The latent roots of certain Markov chains arising in genetics: a new approach. I. Haploid models. Adv. Appl. Probab. 6(2), 260–290 (1974). MR0343949
Cannings, C.: The latent roots of certain Markov chains arising in genetics: a new approach. II. Further haploid models. Adv. Appl. Probab. 7(2), 264–282 (1975). MR0371430
Cordero, F., González Casanova, A., Schweinsberg, J., Wilke-Berenguer, M.: Λ-coalescents arising in populations with dormancy (2020). arXiv preprint 2009.09418
Cortines, A.: The genealogy of a solvable population model under selection with dynamics related to directed polymers. Bernoulli 22(4), 2209–2236 (2016). MR3498028
Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Springer (2010). MR2571413
Feller, W.: An Introduction to Probability Theory and Its Applications. Vol. II, 2nd edn. Wiley, New York (1971). MR0270403
Griffiths, R.C., Spanò, D.: Orthogonal polynomial kernels and canonical correlations for Dirichlet measures. Bernoulli 19(2), 548–598 (2013). MR3037164
Huillet, T.: Pareto genealogies arising from a Poisson branching evolution model with selection. J. Math. Biol. 68(3), 727–761 (2014). MR3152761
Huillet, T., Möhle, M.: Population genetics models with skewed fertilities: a forward and backward analysis. Stoch. Models 27(3), 521–554 (2011). MR2827443
Huillet, T., Möhle, M.: Correction on ‘Population genetics models with skewed fertilities: a forward and backward analysis’. Stoch. Models 28(3), 527–532 (2012). MR2959453
Huillet, T., Möhle, M.: Asymptotics of symmetric compound Poisson population models. Comb. Probab. Comput. 24(1), 216–253 (2015). MR3318045
Karamata, J.: Neuer Beweis und Verallgemeinerung der Tauberschen Sätze, welche die Laplacesche und Stieltjessche Transformation betreffen. J. Reine Angew. Math. 164, 27–39 (1931). MR1581248
Karamata, J.: Neuer Beweis und Verallgemeinerung einiger Tauberian-Sätze. Math. Z. 33(1), 294–299 (1931). MR1545213
Karlin, S., McGregor, J.: Direct product branching processes and related Markov chains. Proc. Natl. Acad. Sci. USA 51, 598–602 (1964). MR0163362
Karlin, S., McGregor, J.: Direct product branching processes and related induced Markov chains. I. Calculations of rates of approach to homozygosity. In: Proc. Internat. Res. Sem., Statist. Lab., Univ. California, Berkeley, Calif., 1963, pp. 111–145. Springer (1965). MR0217892
Kingman, J.F.C.: The coalescent. Stoch. Process. Appl. 13(3), 235–248 (1982). MR0671034
Kingman, J.F.C.: Exchangeability and the evolution of large populations. In: Exchangeability in Probability and Statistics (Rome, 1981), pp. 97–112. North-Holland, Amsterdam–New York (1982). MR675968
Kingman, J.F.C.: On the genealogy of large populations. J. Appl. Probab. Special Vol. 19A, 27–43 (1982). Essays in statistical science. MR633178
Kozubowski, T.J., Podgórski, K.: A generalized Sibuya distribution. Ann. Inst. Stat. Math. 70(4), 855–887 (2018). MR3830290
Möhle, M.: Total variation distances and rates of convergence for ancestral coalescent processes in exchangeable population models. Adv. Appl. Probab. 32(4), 983–993 (2000). MR1808909
Möhle, M.: On sampling distributions for coalescent processes with simultaneous multiple collisions. Bernoulli 12(1), 35–53 (2006). MR2202319
Möhle, M.: Asymptotic results for coalescent processes without proper frequencies and applications to the two-parameter Poisson–Dirichlet coalescent. Stoch. Process. Appl. 120(11), 2159–2173 (2010). MR2684740
Möhle, M., Sagitov, S.: A classification of coalescent processes for haploid exchangeable population models. Ann. Probab. 29(4), 1547–1562 (2001). MR1880231
Pitman, J.: Coalescents with multiple collisions. Ann. Probab. 27(4), 1870–1902 (1999). MR1742892
Sagitov, S.: The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab. 36(4), 1116–1125 (1999). MR1742154
Schweinsberg, J.: Coalescents with simultaneous multiple collisions. Electron. J. Probab. 5 (Paper no. 12), 1–50 (2000). MR1781024
Schweinsberg, J.: A necessary and sufficient condition for the Λ-coalescent to come down from infinity. Electron. Commun. Probab. 5, 1–11 (2000). MR1736720
Schweinsberg, J.: Coalescent processes obtained from supercritical Galton–Watson processes. Stoch. Process. Appl. 106(1), 107–139 (2003). MR1983046