Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 1, Issue 2 (2014)
  4. A martingale bound for the entropy assoc ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

A martingale bound for the entropy associated with a trimmed filtration on Rd
Volume 1, Issue 2 (2014), pp. 151–165
Alexei Kulik   Taras Tymoshkevych  

Authors

 
Placeholder
https://doi.org/10.15559/15-VMSTA16
Pub. online: 2 February 2015      Type: Research Article      Open accessOpen Access

Received
22 December 2014
Revised
18 January 2015
Accepted
19 January 2015
Published
2 February 2015

Abstract

Using martingale methods, we provide bounds for the entropy of a probability measure on ${\mathbb{R}}^{d}$ with the right-hand side given in a certain integral form. As a corollary, in the one-dimensional case, we obtain a weighted log-Sobolev inequality.

References

[1] 
Capitaine, M., Hsu, E., Ledoux, M.: Martingale representation and a simple proof of logarithmic Sobolev inequalities on path spaces. Electron. Commun. Probab. 2, 71–81 (1997) MR1484557. doi:10.1214/ECP.v2-986
[2] 
Carlen, E., Pardoux, E.: Differential calculus and integration by parts on Poisson space. In: Stochastics, Algebra and Analysis in Classical and Quantum Dynamics, pp. 63–73. Kluwer, Dordrecht (1990) MR1052702
[3] 
Clark, I.M.C.: The representation of functionals of Brownian motion by stochastic integrals. Ann. Math. Stat. 41(4), 46–52 (1970) MR0270448
[4] 
Elliott, R.J.: Stochastic Calculus and Applications. Appl. Math., vol. 18, Springer-Verlag, Berlin, Heidelberg, New York (1982) MR0678919
[5] 
Elliott, R.J., Tsoi, A.H.: Integration by parts for Poisson processes. J. Multivar. Anal. 44, 179–190 (1993) MR1219202. doi:10.1006/jmva.1993.1010
[6] 
Gong, F.-Zh., Ma, Zh.-M.: Martingale representation and log-Sobolev inequality on loop space. C. R. Acad. Sci. Paris 326, 749–753 (1998) MR1641711. doi:10.1016/S0764-4442(98)80043-8
[7] 
Koshevoy, G.A., Mosler, K.: Zonoid trimming for multivariate distributions. Ann. Stat. 25(5), 1998–2017 (1997) MR1474078. doi:10.1214/aos/1069362382
[8] 
Ledoux, M.: Concentration of measure and logarithmic Sobolev inequalities. In: Seminaire de Probabilités XXXIII. Lect. Notes Math., vol. 1709, pp. 120–219 (1999) MR1767995. doi:10.1007/BFb0096511
[9] 
Nualart, D.: Analysis in Wiener space and anticipating stochastic calculus, Springer, Berlin, Heidelberg, Lect. Notes Math., vol. 1690, pp. 123–227 (1998) MR1668111. doi:10.1007/BFb0092538
[10] 
Ocone, D.: Malliavin’s calcululs and stochastic integral representation of functionals of diffusion processes. Stochastics 8, 161–185 (1984) MR0749372. doi:10.1080/17442508408833299

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2014 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Martingale entropy log-Sobolev inequality trimmed regions trimmed filtration

MSC2010
39B62 47D07 60E15 60J60

Metrics
since March 2018
421

Article info
views

374

Full article
views

309

PDF
downloads

151

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy