Approximations for a solution to stochastic heat equation with stable noise
Volume 3, Issue 2 (2016), pp. 133–144
Pub. online: 30 June 2016
Type: Research Article
Open Access
Received
25 April 2016
25 April 2016
Revised
15 June 2016
15 June 2016
Accepted
15 June 2016
15 June 2016
Published
30 June 2016
30 June 2016
Abstract
We consider a Cauchy problem for stochastic heat equation driven by a real harmonizable fractional stable process Z with Hurst parameter $H>1/2$ and stability index $\alpha >1$. It is shown that the approximations for its solution, which are defined by truncating the LePage series for Z, converge to the solution.
References
Balan, R., Kim, D.: The stochastic heat equation driven by a Gaussian noise: Germ Markov property. Commun. Stoch. Anal. 2(2), 229–249 (2008). MR2446691
Balan, R.M., Tudor, C.A.: Stochastic heat equation with multiplicative fractional-colored noise. J. Theor. Probab. 23(3), 834–870 (2010). MR2679959. doi:10.1007/s10959-009-0237-3
Balan, R.M., Tudor, C.A.: The stochastic wave equation with fractional noise: A random field approach. Stoch. Process. Appl. 120(12), 2468–2494 (2010). MR2728174. doi:10.1016/j.spa.2010.08.006
Dozzi, M., Shevchenko, G.: Real harmonizable multifractional stable process and its local properties. Stoch. Process. Appl. 121(7), 1509–1523 (2011). MR2802463. doi:10.1016/j.spa.2011.03.012
Kôno, N., Maejima, M.: Hölder continuity of sample paths of some self-similar stable processes. Tokyo J. Math. 14(1), 93–100 (1991). MR1108158. doi:10.3836/tjm/1270130491
Kozachenko, Y.V., Slyvka-Tylyshchak, A.I.: The Cauchy problem for the heat equation with a random right side. Random Oper. Stoch. Equ. 22(1), 53–64 (2014). MR3245299. doi:10.1515/rose-2014-0006
Kozachenko, Y.V., Veresh, K.I.: The heat equation with random initial conditions from Orlicz spaces. Theory Probab. Math. Stat. 80, 71–84 (2010). MR2541953. doi:10.1090/S0094-9000-2010-00795-2
Nualart, E., Quer-Sardanyons, L.: Gaussian estimates for the density of the non-linear stochastic heat equation in any space dimension. Stoch. Process. Appl. 122(1), 418–447 (2012). MR2860455. doi:10.1016/j.spa.2011.08.013
Quer-Sardanyons, L., Tindel, S.: The 1-d stochastic wave equation driven by a fractional Brownian sheet. Stoch. Process. Appl. 117(10), 1448–1472 (2007). MR2353035. doi:10.1016/j.spa.2007.01.009
Radchenko, V.: Mild solution of the heat equation with a general stochastic measure. Stud. Math. 194(3), 231–251 (2009). MR2539554. doi:10.4064/sm194-3-2
Radchenko, V.M.: Properties of integrals with respect to a general stochastic measure in a stochastic heat equation. Theory Probab. Math. Stat. 82, 103–114 (2011). MR2790486. doi:10.1090/S0094-9000-2011-00830-7
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach Science Publishers, Yverdon (1993), 976 pp. MR1347689
Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, New York, NY (1994). MR1280932
Walsh, J.B.: An introduction to stochastic partial differential equations. In: École D’été de Probabilités de Saint-Flour, XIV, 1984. Lecture Notes in Math., vol. 1180, pp. 265–439. Springer, Berlin (1986). MR0876085. doi:10.1007/BFb0074920
Zähle, M.: On the link between fractional and stochastic calculus. In: Stochastic Dynamics (Bremen, 1997), pp. 305–325. Springer, New York (1999). MR1678495. doi:10.1007/0-387-22655-9_13