A stochastic heat equation on $[0,T]\times B$, where B is a bounded domain, is considered. The equation is driven by a general stochastic measure, for which only σ-additivity in probability is assumed. The existence, uniqueness and Hölder regularity of the solution are proved.
This paper investigates sample paths properties of φ-sub-Gaussian processes by means of entropy methods. Basing on a particular entropy integral, we treat the questions on continuity and the rate of growth of sample paths. The obtained results are then used to investigate the sample paths properties for a particular class of φ-sub-Gaussian processes related to the random heat equation. We derive the estimates for the distribution of suprema of such processes and evaluate their rate of growth.
with random source f. The latter is, in certain sense, a symmetric α-stable spatial white noise multiplied by some regular function σ. We define a candidate solution U to the equation via Poisson’s formula and prove that the corresponding expression is well defined at each point almost surely, although the exceptional set may depend on the particular point $(x,t)$. We further show that U is Hölder continuous in time but with probability 1 is unbounded in any neighborhood of each point where σ does not vanish. Finally, we prove that U is a generalized solution to the equation.