Tests for proportional hazards assumption concerning specified covariates or groups of covariates are proposed. The class of alternatives is wide: log-hazard rates under different values of covariates may cross, approach, go away. The data may be right censored. The limit distribution of the test statistic is derived. Power of the test against approaching alternatives is given. Real data examples are considered.
Moment inequalities for a class of functionals of i.i.d. random fields are proved. Then rates are derived in the central limit theorem for weighted sums of such randoms fields via an approximation by m-dependent random fields.
In this paper the fractional Cox–Ingersoll–Ross process on ${\mathbb{R}_{+}}$ for $H<1/2$ is defined as a square of a pointwise limit of the processes ${Y_{\varepsilon }}$, satisfying the SDE of the form $d{Y_{\varepsilon }}(t)=(\frac{k}{{Y_{\varepsilon }}(t){1_{\{{Y_{\varepsilon }}(t)>0\}}}+\varepsilon }-a{Y_{\varepsilon }}(t))dt+\sigma d{B^{H}}(t)$, as $\varepsilon \downarrow 0$. Properties of such limit process are considered. SDE for both the limit process and the fractional Cox–Ingersoll–Ross process are obtained.
In this paper we consider a telegraph equation with time-dependent coefficients, governing the persistent random walk of a particle moving on the line with a time-varying velocity $c(t)$ and changing direction at instants distributed according to a non-stationary Poisson distribution with rate $\lambda (t)$. We show that, under suitable assumptions, we are able to find the exact form of the probability distribution. We also consider the space-fractional counterpart of this model, finding the characteristic function of the related process. A conclusive discussion is devoted to the potential applications to run-and-tumble models.