A one-dimensional stochastic wave equation driven by a general stochastic measure is studied in this paper. The Fourier series expansion of stochastic measures is considered. It is proved that changing the integrator by the corresponding partial sums or by Fejèr sums we obtain the approximations of mild solution of the equation.
Distance covariance is a quantity to measure the dependence of two random vectors. We show that the original concept introduced and developed by Székely, Rizzo and Bakirov can be embedded into a more general framework based on symmetric Lévy measures and the corresponding real-valued continuous negative definite functions. The Lévy measures replace the weight functions used in the original definition of distance covariance. All essential properties of distance covariance are preserved in this new framework.
From a practical point of view this allows less restrictive moment conditions on the underlying random variables and one can use other distance functions than Euclidean distance, e.g. Minkowski distance. Most importantly, it serves as the basic building block for distance multivariance, a quantity to measure and estimate dependence of multiple random vectors, which is introduced in a follow-up paper [Distance Multivariance: New dependence measures for random vectors (submitted). Revised version of arXiv: 1711.07775v1] to the present article.
It is shown that the absolute constant in the Berry–Esseen inequality for i.i.d. Bernoulli random variables is strictly less than the Esseen constant, if $1\le n\le 500000$, where n is a number of summands. This result is got both with the help of a supercomputer and an interpolation theorem, which is proved in the paper as well. In addition, applying the method developed by S. Nagaev and V. Chebotarev in 2009–2011, an upper bound is obtained for the absolute constant in the Berry–Esseen inequality in the case under consideration, which differs from the Esseen constant by no more than 0.06%. As an auxiliary result, we prove a bound in the local Moivre–Laplace theorem which has a simple and explicit form.
Despite the best possible result, obtained by J. Schulz in 2016, we propose our approach to the problem of finding the absolute constant in the Berry–Esseen inequality for two-point distributions since this approach, combining analytical methods and the use of computers, could be useful in solving other mathematical problems.
We consider a family of mixed processes given as the sum of a fractional Brownian motion with Hurst parameter $H\in (3/4,1)$ and a multiple of an independent standard Brownian motion, the family being indexed by the scaling factor in front of the Brownian motion. We analyze the underlying markets with methods from large financial markets. More precisely, we show the existence of a strong asymptotic arbitrage (defined as in Kabanov and Kramkov [Finance Stoch. 2(2), 143–172 (1998)]) when the scaling factor converges to zero. We apply a result of Kabanov and Kramkov [Finance Stoch. 2(2), 143–172 (1998)] that characterizes the notion of strong asymptotic arbitrage in terms of the entire asymptotic separation of two sequences of probability measures. The main part of the paper consists of proving the entire separation and is based on a dichotomy result for sequences of Gaussian measures and the concept of relative entropy.
A nonlinear stochastic differential equation with the order of nonlinearity higher than one, with several discrete and distributed delays and time varying coefficients is considered. It is shown that the sufficient conditions for exponential mean square stability of the linear part of the considered nonlinear equation also are sufficient conditions for stability in probability of the initial nonlinear equation. Some new sufficient condition of stability in probability for the zero solution of the considered nonlinear non-autonomous stochastic differential equation is obtained which can be considered as a multi-condition of stability because it allows to get for one considered equation at once several different complementary of each other sufficient stability conditions. The obtained results are illustrated with numerical simulations and figures.
In this paper we present some new limit theorems for power variations of stationary increment Lévy driven moving average processes. Recently, such asymptotic results have been investigated in [Ann. Probab. 45(6B) (2017), 4477–4528, Festschrift for Bernt Øksendal, Stochastics 81(1) (2017), 360–383] under the assumption that the kernel function potentially exhibits a singular behaviour at 0. The aim of this work is to demonstrate how some of the results change when the kernel function has multiple singularity points. Our paper is also related to the article [Stoch. Process. Appl. 125(2) (2014), 653–677] that studied the same mathematical question for the class of Brownian semi-stationary models.
We consider the infinite divisibility of distributions of some well-known inverse subordinators. Using a tail probability bound, we establish that distributions of many of the inverse subordinators used in the literature are not infinitely divisible. We further show that the distribution of a renewal process time-changed by an inverse stable subordinator is not infinitely divisible, which in particular implies that the distribution of the fractional Poisson process is not infinitely divisible.
We investigate the pricing of cliquet options in a jump-diffusion model. The considered option is of monthly sum cap style while the underlying stock price model is driven by a drifted Lévy process entailing a Brownian diffusion component as well as compound Poisson jumps. We also derive representations for the density and distribution function of the emerging Lévy process. In this setting, we infer semi-analytic expressions for the cliquet option price by two different approaches. The first one involves the probability distribution function of the driving Lévy process whereas the second draws upon Fourier transform techniques. With view on sensitivity analysis and hedging purposes, we eventually deduce representations for several Greeks while putting emphasis on the Vega.
A fractional advection-dispersion equation (fADE) has been advocated for heavy-tailed flows where the usual Brownian diffusion models fail. A stochastic differential equation (SDE) driven by a stable Lévy process gives a forward equation that matches the space-fractional advection-dispersion equation and thus gives the stochastic framework of particle tracking for heavy-tailed flows. For constant advection and dispersion coefficient functions, the solution to such SDE itself is a stable process and can be derived easily by least square parameter fitting from the observed flow concentration data. However, in a more generalized scenario, a closed form for the solution to a stable SDE may not exist. We propose a numerical method for solving/generating a stable SDE in a general set-up. The method incorporates a discretized finite volume scheme with the characteristic line to solve the fADE or the forward equation for the Markov process that solves the stable SDE. Then we use a numerical scheme to generate the solution to the governing SDE using the fADE solution. Also, often the functional form of the advection or dispersion coefficients are not known for a given plume concentration data to start with. We use a Levenberg–Marquardt (L-M) regularization method to estimate advection and dispersion coefficient function from the observed data (we present the case for a linear advection) and proceed with the SDE solution construction described above.
Confidence ellipsoids for linear regression coefficients are constructed by observations from a mixture with varying concentrations. Two approaches are discussed. The first one is the nonparametric approach based on the weighted least squares technique. The second one is an approximate maximum likelihood estimation with application of the EM-algorithm for the estimates calculation.