On the infinite divisibility of distributions of some inverse subordinators
Volume 5, Issue 4 (2018), pp. 509–519
Pub. online: 20 July 2018
Type: Research Article
Open Access
Received
18 March 2018
18 March 2018
Revised
21 June 2018
21 June 2018
Accepted
29 June 2018
29 June 2018
Published
20 July 2018
20 July 2018
Abstract
We consider the infinite divisibility of distributions of some well-known inverse subordinators. Using a tail probability bound, we establish that distributions of many of the inverse subordinators used in the literature are not infinitely divisible. We further show that the distribution of a renewal process time-changed by an inverse stable subordinator is not infinitely divisible, which in particular implies that the distribution of the fractional Poisson process is not infinitely divisible.
References
Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge University Press, Cambridge, U.K. (2009). MR2512800. https://doi.org/10.1017/CBO9780511809781
Beghin, L., Orsingher, E.: Fractional Poisson processes and related random motions. Electron. J. Probab. 14, 1790–1826 (2009). MR2535014. https://doi.org/10.1214/EJP.v14-675
Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996). MR1406564
Biard, R., Saussereau, B.: Fractional Poisson process: long-range dependence and applications in ruin theory. J. Appl. Probab. 51, 727–740 (2014). MR3256223. https://doi.org/10.1239/jap/1409932670
Chung, K.L.: A Course in Probability Theory, 3rd edn. Academic Press, San Diego, USA (2001). MR1796326
Halgreen, C.: Self-decomposability of the generalized inverse Gaussian and hyperbolic distributions. Z. Wahrscheinlichkeitstheor. Verw. Geb. 47, 13–17 (1979). MR0521527. https://doi.org/10.1007/BF00533246
Janczura, J., Orzel, S., Wylomanska, A.: Subordinated α-stable Ornstein-Uhlenbeck process as a tool for financial data description. Phys. A 390, 4379–4387 (2011). https://doi.org/10.1016/j.physa.2011.07.007
Kumar, A., Vellaisamy, P.: Inverse tempered stable subordinators. Stat. Probab. Lett. 103, 134–141 (2015). MR3350873. https://doi.org/10.1016/j.spl.2015.04.010
Laskin, N.: Fractional Poisson process. Commun. Nonlinear Sci. Numer. Simul. 8, 201–213 (2003). MR2007003. https://doi.org/10.1016/S1007-5704(03)00037-6
Meerschaert, M.M., Nane, E., Vellaisamy, P.: The fractional Poisson process and the inverse stable subordinator. Electron. J. Probab. 16, 1600–1620 (2011). MR2835248. https://doi.org/10.1214/EJP.v16-920
Meerschaert, M.M., Nane, E., Vellaisamy, P.: Transient anamolous subdiffusions on bounded domains. Proc. Am. Math. Soc. 141, 699–710 (2013). MR2996975. https://doi.org/10.1090/S0002-9939-2012-11362-0
Meerschaert, M.M., Nane, E., Xiao, Y.: Correlated continuous time random walks. Stat. Probab. Lett. 79, 1194–1202 (2009). MR2519002. https://doi.org/10.1016/j.spl.2009.01.007
Meerschaert, M.M., Scheffler, H.: Limit theorems for continuous time random walks with infinite mean waiting times. J. Appl. Probab. 41(3), 623–638 (2004). MR2074812. https://doi.org/10.1239/jap/1091543414
Meerschaert, M.M., Scheffler, H.: Triangular array limits for continuous time random walks. Stoch. Process. Appl. 118, 1606–1633 (2008). MR2442372. https://doi.org/10.1016/j.spa.2007.10.005
Meerschaert, M.M., Straka, P.: Inverse stable subordinators. Math. Model. Nat. Phenom. 8, 1–16 (2013). MR3049524. https://doi.org/10.1051/mmnp/20138201
Mikosch, T.: Non-Life Insurance Mathematics: An Introduction with the Poisson Process. Springer (2009). MR2503328. https://doi.org/10.1007/978-3-540-88233-6
Nane, E.: Stochastic solutions of a class of higher order Cauchy problems in ${\mathbb{R}^{d}}$. Stoch. Dyn. 10, 341–366 (2010). MR2671380. https://doi.org/10.1142/S021949371000298X
Orsingher, E., Beghin, L.: Fractional diffusion equations and processes with randomly varying time. Ann. Probab., 206–249 (2009). MR2489164. https://doi.org/10.1214/08-AOP401
Repin, O.N., Saichev, A.I.: Fractional Poisson law. Radiophys. Quantum Electron. 43, 738–741 (2000). MR1910034. https://doi.org/10.1023/A:1004890226863
Rosiński, J.: Tempering stable processes. Stoch. Process. Appl. 117, 677–707 (2007). MR2327834. https://doi.org/10.1016/j.spa.2006.10.003
Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press (1999). MR1739520
Steutel, F.W.: Infinite divisibility in theory and practice. Scand. J. Stat. 6, 57–64 (1979). MR0538596
Steutel, F.W., Van Harn, K.: Infinite Divisibility of Probability Distributions on the Real Line. Marcel Dekker, New York (2004). MR2011862
Vellaisamy, P., Kumar, A.: First-exit times of an inverse Gaussian process. Stochastics 1, 29–48 (2018). MR3750637. https://doi.org/10.1080/17442508.2017.1311897
Wong, R.: Asymptotic Approximations of Integrals. Academic Press, Boston (1989). MR1016818