General models of random fields on the sphere associated with nonlocal equations in time and space are studied. The properties of the corresponding angular power spectrum are discussed and asymptotic results in terms of random time changes are found.
This note provides a simple sufficient condition ensuring that solutions of stochastic delay differential equations (SDDEs) driven by subordinators are nonnegative. While, to the best of our knowledge, no simple nonnegativity conditions are available in the context of SDDEs, we compare our result to the literature within the subclass of invertible continuous-time ARMA (CARMA) processes. In particular, we analyze why our condition cannot be necessary for CARMA($p,q$) processes when $p=2$, and we show that there are various situations where our condition applies while existing results do not as soon as $p\ge 3$. Finally, we extend the result to a multidimensional setting.
Infinite divisibility of a class of two-dimensional vectors with components in the second Wiener chaos is studied. Necessary and sufficient conditions for infinite divisibility are presented as well as more easily verifiable sufficient conditions. The case where both components consist of a sum of two Gaussian squares is treated in more depth, and it is conjectured that such vectors are infinitely divisible.