Models of space-time random fields on the sphere
Volume 9, Issue 2 (2022), pp. 139–156
Pub. online: 3 February 2022
Type: Research Article
Open Access
Received
12 November 2021
12 November 2021
Revised
15 January 2022
15 January 2022
Accepted
19 January 2022
19 January 2022
Published
3 February 2022
3 February 2022
Abstract
General models of random fields on the sphere associated with nonlocal equations in time and space are studied. The properties of the corresponding angular power spectrum are discussed and asymptotic results in terms of random time changes are found.
References
Alrawashdeh, M.S., Kelly, J.F., Meerschaert, M.M., Scheffler, H.-P.: Applications of inverse tempered stable subordinators. Comput. Math. Appl. 73(6), 892–905 (2017). MR3623093. https://doi.org/10.1016/j.camwa.2016.07.026
Anh, V.V., Broadbridge, P., Olenko, A., Wang Yu, G.: On approximation for fractional stochastic partial differential equations on the sphere. Stoch. Environ. Res. Risk Assess. 32, 2585–2603 (2018). https://doi.org/10.1007/s00477-018-1517-1
Anh, V.V., Leonenko, N.N., Sikorskii, A.: Stochastic representation of fractional Bessel–Riesz motion. Chaos Solitons Fractals 102, 135–139 (2017). MR3672004. https://doi.org/10.1016/j.chaos.2017.04.039
Anh, V.V., Olenko, A., Wang Yu, G.: Fractional stochastic partial differential equation for random tangent fields on the sphere. Theory Probab. Math. Stat. 104, 3–22 (2021). https://doi.org/10.1090/tpms/1142
Aubin, T.: Some Nonlinear Problems in Riemannian Geometry. Springer Monographs in Mathematics. Springer, Berlin (1998). MR1636569. https://doi.org/10.1007/978-3-662-13006-3
Bertoin, J.: Subordinators: examples and applications. In: Bernard, P. (ed.) Lectures on Probability Theory and Statistics. Lecture Notes in Mathematics, vol. 1717. Springer, Berlin, Heidelberg (1999). MR1746300. https://doi.org/10.1007/978-3-540-48115-7_1
Bingham, N.H., Symons, T.L.: Gaussian random fields on the sphere and sphere cross line. Stoch. Process. Appl. In press. Available online 4 September 2019. https://doi.org/10.1016/j.spa.2019.08.007
Broadbridge, P., Kolesnik, A.D., Leonenko, N., Olenko, A.: Random spherical hyperbolic diffusion. J. Stat. Phys. 177, 889–916 (2019). MR4031900. https://doi.org/10.1007/s10955-019-02395-0
Buchak, K., Sakhno, L.: On the governing equations for Poisson and Skellam processes time-changed by inverse subordinators. Theory Probab. Math. Stat. 98, 91–104 (2019). MR3824680. https://doi.org/10.1090/tpms/1064
Capitanelli, R., D’Ovidio, M.: Fractional equations via convergence of forms. Fract. Calc. Appl. Anal. 22, 844–870 (2019). MR4023098. https://doi.org/10.1515/fca-2019-0047
Chen, Z.-Q.: Time fractional equations and probabilistic representation. Chaos Solitons Fractals 102, 168–174 (2017). MR3672008. https://doi.org/10.1016/j.chaos.2017.04.029
Dautray, V., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Thechnology. Vol. 3. Spectral Theory and Applications. Springer, Berlin (1990). MR1064315
D’Ovidio, M.: Coordinates changed random fields on the sphere. J. Stat. Phys. 154, 1153–1176 (2014). MR3164607. https://doi.org/10.1007/s10955-013-0911-9
D’Ovidio, M., Leonenko, N., Orsingher, E.: Fractional spherical random fields. Stat. Probab. Lett. 116, 146–156 (2016). MR3508533. https://doi.org/10.1016/j.spl.2016.04.011
D’Ovidio, M., Nane, E.: Time dependent random fields on spherical non-homogeneous surfaces. Stoch. Process. Appl. 124, 2098–2131 (2014). MR3188350. https://doi.org/10.1016/j.spa.2014.02.001
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North Holland Mathematics Studies, vol. 204. Elsevier Science, Amsterdam (2006). MR2218073
Kochubei, A.N.: General fractional calculus, evolution equations, and renewal processes. Integral Equ. Oper. Theory 71(4), 583–600 (2011). MR2854867. https://doi.org/10.1007/s00020-011-1918-8
Lan, X., Xiao, Y.: Regularity properties of the solution to a stochastic heat equation driven by a fractional Gaussian noise on ${S^{2}}$. J. Math. Anal. Appl. 476, 27–52 (2019). MR3944417. https://doi.org/10.1016/j.jmaa.2019.01.077
Lang, A., Schwab, C.: Isotropic Gaussian random fields on the sphere: regularity, fast simulation and stochastic partial differential equations. Ann. Appl. Probab. 25(6), 3047–3094 (2015). MR3404631. https://doi.org/10.1214/14-AAP1067
Marinucci, D., Peccati, G.: Ergodicity and Gaussianity for spherical random fields. J. Math. Phys. 52, 043301 (2010). MR2662485. https://doi.org/10.1063/1.3329423
Marinucci, D., Peccati, G.: Random Fields on the Sphere: Representation, Limit Theorems and Cosmological Applications. Cambridge University Press, Cambridge (2011). MR2840154. https://doi.org/10.1017/CBO9780511751677
Schoenberg, I.J.: Positive definite functions on spheres. Duke Math. J. 9(1), 96–108 (1942). MR0005922. https://doi.org/10.1215/S0012-7094-42-00908-6
Toaldo, B.: Convolution-type derivatives, hitting-times of subordinators and time-changed ${C_{0}}$-semigroups. Potential Anal. 42, 115–140 (2015). MR3297989. https://doi.org/10.1007/s11118-014-9426-5
Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K.: Quantum Theory of Angular Momentum. World Scientific Publishing Co. Pte. Ltd., Singapore (2008). MR1022665. https://doi.org/10.1142/0270
Widder, D.V.: The Laplace Transform. Princeton University Press, Princeton (1946). MR0005923
Yosida, K.: Brownian motion on the surface of the 3-sphere. Ann. Math. Stat. 20(2), 292–296 (1949). MR0030152. https://doi.org/10.1214/aoms/1177730038