Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 9, Issue 2 (2022)
  4. Models of space-time random fields on th ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Models of space-time random fields on the sphere
Volume 9, Issue 2 (2022), pp. 139–156
Mirko D’Ovidio   Enzo Orsingher   Lyudmyla Sakhno  

Authors

 
Placeholder
https://doi.org/10.15559/22-VMSTA200
Pub. online: 3 February 2022      Type: Research Article      Open accessOpen Access

Received
12 November 2021
Revised
15 January 2022
Accepted
19 January 2022
Published
3 February 2022

Abstract

General models of random fields on the sphere associated with nonlocal equations in time and space are studied. The properties of the corresponding angular power spectrum are discussed and asymptotic results in terms of random time changes are found.

References

[1] 
Alrawashdeh, M.S., Kelly, J.F., Meerschaert, M.M., Scheffler, H.-P.: Applications of inverse tempered stable subordinators. Comput. Math. Appl. 73(6), 892–905 (2017). MR3623093. https://doi.org/10.1016/j.camwa.2016.07.026
[2] 
Anh, V.V., Broadbridge, P., Olenko, A., Wang Yu, G.: On approximation for fractional stochastic partial differential equations on the sphere. Stoch. Environ. Res. Risk Assess. 32, 2585–2603 (2018). https://doi.org/10.1007/s00477-018-1517-1
[3] 
Anh, V.V., Leonenko, N.N., Sikorskii, A.: Stochastic representation of fractional Bessel–Riesz motion. Chaos Solitons Fractals 102, 135–139 (2017). MR3672004. https://doi.org/10.1016/j.chaos.2017.04.039
[4] 
Anh, V.V., Olenko, A., Wang Yu, G.: Fractional stochastic partial differential equation for random tangent fields on the sphere. Theory Probab. Math. Stat. 104, 3–22 (2021). https://doi.org/10.1090/tpms/1142
[5] 
Aubin, T.: Some Nonlinear Problems in Riemannian Geometry. Springer Monographs in Mathematics. Springer, Berlin (1998). MR1636569. https://doi.org/10.1007/978-3-662-13006-3
[6] 
Bertoin, J.: Subordinators: examples and applications. In: Bernard, P. (ed.) Lectures on Probability Theory and Statistics. Lecture Notes in Mathematics, vol. 1717. Springer, Berlin, Heidelberg (1999). MR1746300. https://doi.org/10.1007/978-3-540-48115-7_1
[7] 
Bingham, N.H., Symons, T.L.: Gaussian random fields on the sphere and sphere cross line. Stoch. Process. Appl. In press. Available online 4 September 2019. https://doi.org/10.1016/j.spa.2019.08.007
[8] 
Broadbridge, P., Kolesnik, A.D., Leonenko, N., Olenko, A.: Random spherical hyperbolic diffusion. J. Stat. Phys. 177, 889–916 (2019). MR4031900. https://doi.org/10.1007/s10955-019-02395-0
[9] 
Buchak, K., Sakhno, L.: On the governing equations for Poisson and Skellam processes time-changed by inverse subordinators. Theory Probab. Math. Stat. 98, 91–104 (2019). MR3824680. https://doi.org/10.1090/tpms/1064
[10] 
Capitanelli, R., D’Ovidio, M.: Fractional equations via convergence of forms. Fract. Calc. Appl. Anal. 22, 844–870 (2019). MR4023098. https://doi.org/10.1515/fca-2019-0047
[11] 
Chen, Z.-Q.: Time fractional equations and probabilistic representation. Chaos Solitons Fractals 102, 168–174 (2017). MR3672008. https://doi.org/10.1016/j.chaos.2017.04.029
[12] 
Dautray, V., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Thechnology. Vol. 3. Spectral Theory and Applications. Springer, Berlin (1990). MR1064315
[13] 
D’Ovidio, M.: Coordinates changed random fields on the sphere. J. Stat. Phys. 154, 1153–1176 (2014). MR3164607. https://doi.org/10.1007/s10955-013-0911-9
[14] 
D’Ovidio, M., Leonenko, N., Orsingher, E.: Fractional spherical random fields. Stat. Probab. Lett. 116, 146–156 (2016). MR3508533. https://doi.org/10.1016/j.spl.2016.04.011
[15] 
D’Ovidio, M., Nane, E.: Time dependent random fields on spherical non-homogeneous surfaces. Stoch. Process. Appl. 124, 2098–2131 (2014). MR3188350. https://doi.org/10.1016/j.spa.2014.02.001
[16] 
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North Holland Mathematics Studies, vol. 204. Elsevier Science, Amsterdam (2006). MR2218073
[17] 
Kochubei, A.N.: General fractional calculus, evolution equations, and renewal processes. Integral Equ. Oper. Theory 71(4), 583–600 (2011). MR2854867. https://doi.org/10.1007/s00020-011-1918-8
[18] 
Lan, X., Xiao, Y.: Regularity properties of the solution to a stochastic heat equation driven by a fractional Gaussian noise on ${S^{2}}$. J. Math. Anal. Appl. 476, 27–52 (2019). MR3944417. https://doi.org/10.1016/j.jmaa.2019.01.077
[19] 
Lang, A., Schwab, C.: Isotropic Gaussian random fields on the sphere: regularity, fast simulation and stochastic partial differential equations. Ann. Appl. Probab. 25(6), 3047–3094 (2015). MR3404631. https://doi.org/10.1214/14-AAP1067
[20] 
Marinucci, D., Peccati, G.: Ergodicity and Gaussianity for spherical random fields. J. Math. Phys. 52, 043301 (2010). MR2662485. https://doi.org/10.1063/1.3329423
[21] 
Marinucci, D., Peccati, G.: Random Fields on the Sphere: Representation, Limit Theorems and Cosmological Applications. Cambridge University Press, Cambridge (2011). MR2840154. https://doi.org/10.1017/CBO9780511751677
[22] 
Schoenberg, I.J.: Positive definite functions on spheres. Duke Math. J. 9(1), 96–108 (1942). MR0005922. https://doi.org/10.1215/S0012-7094-42-00908-6
[23] 
Toaldo, B.: Convolution-type derivatives, hitting-times of subordinators and time-changed ${C_{0}}$-semigroups. Potential Anal. 42, 115–140 (2015). MR3297989. https://doi.org/10.1007/s11118-014-9426-5
[24] 
Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K.: Quantum Theory of Angular Momentum. World Scientific Publishing Co. Pte. Ltd., Singapore (2008). MR1022665. https://doi.org/10.1142/0270
[25] 
Widder, D.V.: The Laplace Transform. Princeton University Press, Princeton (1946). MR0005923
[26] 
Yosida, K.: Brownian motion on the surface of the 3-sphere. Ann. Math. Stat. 20(2), 292–296 (1949). MR0030152. https://doi.org/10.1214/aoms/1177730038

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2022 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Fractional equations spherical Brownian motion subordinators random fields Laplace–Beltrami operators spherical harmonics

MSC2010
60G60 60G22 60H99

Metrics
since March 2018
480

Article info
views

519

Full article
views

493

PDF
downloads

153

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy