Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 8, Issue 3 (2021)
  4. On nonnegative solutions of SDDEs with a ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

On nonnegative solutions of SDDEs with an application to CARMA processes
Volume 8, Issue 3 (2021), pp. 309–328
Mikkel Slot Nielsen ORCID icon link to view author Mikkel Slot Nielsen details   Victor Rohde  

Authors

 
Placeholder
https://doi.org/10.15559/21-VMSTA177
Pub. online: 31 March 2021      Type: Research Article      Open accessOpen Access

Received
16 October 2020
Revised
12 March 2021
Accepted
12 March 2021
Published
31 March 2021

Abstract

This note provides a simple sufficient condition ensuring that solutions of stochastic delay differential equations (SDDEs) driven by subordinators are nonnegative. While, to the best of our knowledge, no simple nonnegativity conditions are available in the context of SDDEs, we compare our result to the literature within the subclass of invertible continuous-time ARMA (CARMA) processes. In particular, we analyze why our condition cannot be necessary for CARMA($p,q$) processes when $p=2$, and we show that there are various situations where our condition applies while existing results do not as soon as $p\ge 3$. Finally, we extend the result to a multidimensional setting.

References

[1] 
Ball, K.: Completely monotonic rational functions and Hall’s marriage theorem. J. Comb. Theory, Ser. B 61(1), 118–124 (1994). MR1275271. https://doi.org/10.1006/jctb.1994.1037
[2] 
Barndorff-Nielsen, O.E., Shephard, N.: Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics. J. R. Stat. Soc., Ser. B, Stat. Methodol. 63(2), 167–241 (2001). MR1841412. https://doi.org/10.1111/1467-9868.00282
[3] 
Basse-O’Connor, A., Nielsen, M.S., Pedersen, J., Rohde, V.: Multivariate stochastic delay differential equations and CAR representations of CARMA processes. Stoch. Process. Appl. 129(10), 4119–4143 (2019). MR3997674. https://doi.org/10.1016/j.spa.2018.11.011
[4] 
Berg, C.: Stieltjes–Pick–Bernstein–Schoenberg and their connection to complete monotonicity. Positive Definite Functions: From Schoenberg to Space-Time Challenges, 15–45 (2008)
[5] 
Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Classics in Applied Mathematics, vol. 9, p. 340. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1994). MR1298430. https://doi.org/10.1137/1.9781611971262
[6] 
Bernstein, S.: Sur les fonctions absolument monotones. Acta Math. 52(1), 1–66 (1929). MR1555269. https://doi.org/10.1007/BF02592679
[7] 
Brockwell, P.J.: Lévy-driven CARMA processes. In: Nonlinear Non-Gaussian Models and Related Filtering Methods, Tokyo, vol. 53, pp. 113–124 (2001). 2000. MR1820952. https://doi.org/10.1023/A:1017972605872
[8] 
Brockwell, P.J.: Recent results in the theory and applications of CARMA processes. Ann. Inst. Stat. Math. 66(4), 647–685 (2014). MR3224604. https://doi.org/10.1007/s10463-014-0468-7
[9] 
Brockwell, P.J., Davis, R.A., Yang, Y.: Estimation for non-negative Lévy-driven CARMA processes. J. Bus. Econ. Stat. 29(2), 250–259 (2011). MR2807879. https://doi.org/10.1198/jbes.2010.08165
[10] 
Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman & Hall/CRC Financial Mathematics Series, p. 535. Chapman & Hall/CRC, Boca Raton, FL (2004). MR2042661
[11] 
Gushchin, A.A., Küchler, U.: On stationary solutions of delay differential equations driven by a Lévy process. Stoch. Process. Appl. 88(2), 195–211 (2000). MR1767844. https://doi.org/10.1016/S0304-4149(99)00126-X
[12] 
Marquardt, T., Stelzer, R.: Multivariate CARMA processes. Stoch. Process. Appl. 117(1), 96–120 (2007). MR2287105. https://doi.org/10.1016/j.spa.2006.05.014
[13] 
Mohammed, S.E.A., Scheutzow, M.K.R.: Lyapunov exponents and stationary solutions for affine stochastic delay equations. Stoch. Stoch. Rep. 29(2), 259–283 (1990). MR1041039. https://doi.org/10.1080/17442509008833617
[14] 
Plemmons, R.J.: M-matrix characterizations. I. Nonsingular M-matrices. Linear Algebra Appl. 18(2), 175–188 (1977). MR0444681. https://doi.org/10.1016/0024-3795(77)90073-8
[15] 
Rajput, B.S., Rosiński, J.: Spectral representations of infinitely divisible processes. Probab. Theory Relat. Fields 82(3), 451–487 (1989). MR1001524. https://doi.org/10.1007/BF00339998
[16] 
Roman, S.: The formula of Faà di Bruno. Am. Math. Mon. 87(10), 805–809 (1980). MR0602839. https://doi.org/10.2307/2320788
[17] 
Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics, vol. 68, p. 486. Cambridge University Press, Cambridge (1999). MR1739520
[18] 
Sato, K., Yamazato, M.: Stationary processes of Ornstein-Uhlenbeck type. In: Probability Theory and Mathematical Statistics, Tbilisi, 1982. Lecture Notes in Math., vol. 1021, pp. 541–551. Springer, (1983). MR0736019. https://doi.org/10.1007/BFb0072949
[19] 
Sato, K., Watanabe, T., Yamazato, M.: Recurrence conditions for multidimensional processes of Ornstein-Uhlenbeck type. J. Math. Soc. Jpn. 46(2), 245–265 (1994). MR1264941. https://doi.org/10.2969/jmsj/04620245
[20] 
Schilling, R.L., Song, R., Vondraček, Z.: Bernstein Functions, 2nd edn. De Gruyter Studies in Mathematics, vol. 37, p. 410. Walter de Gruyter & Co., Berlin (2012). Theory and applications. MR2978140. https://doi.org/10.1515/9783110269338
[21] 
Tsai, H., Chan, K.S.: A note on non-negative continuous time processes. J. R. Stat. Soc., Ser. B, Stat. Methodol. 67(4), 589–597 (2005). MR2168206. https://doi.org/10.1111/j.1467-9868.2005.00517.x

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2021 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
CARMA processes complete monotonocity nonnegative stationary processes stochastic delay differential equations subordinators

MSC2010
60G10 60G17 60H05 60H10

Funding
This work was supported by the Danish Council for Independent Research (grants 4002-00003 and 9056-00011B).

Metrics
since March 2018
598

Article info
views

490

Full article
views

350

PDF
downloads

132

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy