Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 6, Issue 1 (2019)
  4. Probability distributions for the run-an ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Cited by
  • More
    Article info Full article Cited by

Probability distributions for the run-and-tumble models with variable speed and tumbling rate
Volume 6, Issue 1 (2019), pp. 3–12
Luca Angelani   Roberto Garra  

Authors

 
Placeholder
https://doi.org/10.15559/18-VMSTA127
Pub. online: 21 December 2018      Type: Research Article      Open accessOpen Access

Received
16 July 2018
Revised
8 November 2018
Accepted
7 December 2018
Published
21 December 2018

Abstract

In this paper we consider a telegraph equation with time-dependent coefficients, governing the persistent random walk of a particle moving on the line with a time-varying velocity $c(t)$ and changing direction at instants distributed according to a non-stationary Poisson distribution with rate $\lambda (t)$. We show that, under suitable assumptions, we are able to find the exact form of the probability distribution. We also consider the space-fractional counterpart of this model, finding the characteristic function of the related process. A conclusive discussion is devoted to the potential applications to run-and-tumble models.

References

[1] 
Angelani, L.: Run-and-tumble particles, telegrapher’s equation and absorption problems with partially reflecting boundaries. J. Phys. A, Math. Theor. 48, 495003 (2015). MR3434824. https://doi.org/10.1088/1751-8113/48/49/495003
[2] 
Angelani, L.: Confined run-and-tumble swimmers in one dimension. J. Phys. A, Math. Theor. 50, 325601 (2017). MR3673497. https://doi.org/10.1088/1751-8121/aa734c
[3] 
Angelani, L., Di Leonardo, R., Paoluzzi, M.: First-passage time of run-and-tumble particles. Eur. Phys. J. E 37, 59 (2014). MR3434824. https://doi.org/10.1088/1751-8113/48/49/495003
[4] 
Arlt, J., Martinez, V.A., Dawson, A., Pilizota, T., Poon, W.C.K.: Painting with light-powered bacteria. Nat. Commun. 9, 768 (2018)
[5] 
Berg, H.C.: E.Coli in Motion. Springer, New York (2004)
[6] 
Compte, A., Metzler, R.: The generalized cattaneo equation for the description of anomalous transport processes. J. Phys. A, Math. Theor. 30(21), 72–77 (1997). MR1603438. https://doi.org/10.1088/0305-4470/30/21/006
[7] 
De Gregorio, A., Macci, C.: Large deviation principles for telegraph processes. Stat. Probab. Lett. 82(11), 1874–1882 (2012). MR2970286. https://doi.org/10.1016/j.spl.2012.06.023
[8] 
De Gregorio, A., Orsingher, E.: Flying randomly in ${\mathbb{R}^{d}}$ with Dirichlet displacements. Stoch. Process. Appl. 122(2), 676–713 (2012). MR2868936. https://doi.org/10.1016/j.spa.2011.10.009
[9] 
De Gregorio, A., Orsingher, E.: Random flights connecting porous medium and Euler-Poisson-Darboux equations. ArXiv preprint, arXiv:1709.07663 (2017)
[10] 
D’Ovidio, M., Orsingher, E., Toaldo, B.: Time-changed processes governed by space-time fractional telegraph equations. Stoch. Anal. Appl. 32(6), 1009–1045 (2014). MR3270693. https://doi.org/10.1080/07362994.2014.962046
[11] 
Fabrizio, M., Giorgi, C., Morro, A.: Modeling of heat conduction via fractional derivatives. Heat Mass Transf. 53(9), 2785–2797 (2017)
[12] 
Frangipane, G., Dell’Arciprete, D., Petracchini, S., Maggi, C., Saglimbeni, F., Bianchi, S., Vizsnyiczai, G., Bernardini, M.L., Di Leonardo, R.: Dynamic density shaping of photokinetic e. coli. eLife 36608 (2018)
[13] 
Garra, R., Orsingher, E.: Random flights related to the Euler-Poisson-Darboux equation. Markov Process. Relat. Fields 22, 87–110 (2016). MR3523980
[14] 
Garra, R., Orsingher, E.: Random motions with space-varying velocities. In: Panov, V. (eds) Modern Problems of Stochastic Analysis and Statistics (2017). MR3747661
[15] 
Giusti, A.: Dispersion relations for the time-fractional Cattaneo-Maxwell heat equation. J. Math. Phys. 59(1), 013506 (2018). MR3749328. https://doi.org/10.1063/1.5001555
[16] 
Goldstein, S.: On diffusion by discontinuous movements and on the telegraph equation. Q. J. Mech. Appl. Math. 4, 129–156 (1951). MR0047963. https://doi.org/10.1093/qjmam/4.2.129
[17] 
Iacus, S.M.: Statistical analysis of the inhomogeneous telegrapher’s process. Stat. Probab. Lett. 55(1), 83–88 (2001). MR1860195. https://doi.org/10.1016/S0167-7152(01)00133-X
[18] 
Joseph, D.D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61(1), 41 (1989). MR0977943. https://doi.org/10.1103/RevModPhys.61.41
[19] 
Kac, M.: A stochastic model related to the telegrapher’s equation. Rocky Mt. J. Math. 4, 497–509 (1974) (Reprinted from Magnolia Petroleum Company Colloquium Lectures in the Pure and Applied Sciences). MR0510166. https://doi.org/10.1216/RMJ-1974-4-3-497
[20] 
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations vol. 204. North-Holland Mathematics Studies (2006). MR2218073
[21] 
Kolesnik, A.D., Ratanov, N.: Telegraph Processes and Option Pricing vol. 204. Springer, Heidelberg (2013). MR3115087. https://doi.org/10.1007/978-3-642-40526-6
[22] 
Martens, K., Angelani, L., Di Leonardo, R., Bocquet, L.: Probability distributions for the run-and-tumble bacterial dynamics: An analogy to the Lorentz model. Eur. Phys. J. E 35, 84 (2012)
[23] 
Masoliver, J.: Fractional telegrapher’s equation from fractional persistent random walks. Phys. Rev. E 93(5), 052107 (2016). MR3709427. https://doi.org/10.1103/physreve.93.052107
[24] 
Masoliver, J., Weiss, G.H.: Telegraphers equations with variable propagation speeds. Phys. Rev. E 49(5), 3852–3854 (1994)
[25] 
Orsingher, E., Beghin, L.: Time-fractional telegraph equations and telegraph processes with Brownian time. Probab. Theory Relat. Fields 128(1), 141–160 (2004). MR2027298. https://doi.org/10.1007/s00440-003-0309-8
[26] 
Orsingher, E., Zhao, X.L.: The space-fractional telegraph equation. Chin. Ann. Math. 24B:1, 45–56 (2003). MR1966596. https://doi.org/10.1142/S0252959903000050
[27] 
Schnitzer, M.J.: Theory of continuum random walks and application to chemotaxis. Phys. Rev. E 48, 2553 (1993). MR1376959. https://doi.org/10.1103/PhysRevE.48.2553
[28] 
Son, K., Menolascina, F., Stocker, R.: Speed-dependent chemotactic precision in marine bacteria. Proc. Natl. Acad. Sci. USA 113, 8624 (2016)
[29] 
Tipping, M.J., Steel, B.C., Delalez, N.J., Berry, R.M., Armitage, J.P.: Quantification of flagellar motor stator dynamics through in vivo proton-motive force control. Mol. Microbiol. 87, 338 (2013)
[30] 
Vizsnyiczai, G., Frangipane, G., Maggi, C., Saglimbeni, M., Bianchi, S., Di Leonardo, R.: Light controlled 3d micromotors powered by bacteria. Nat. Commun. 8, 15974 (2017)
[31] 
Walter, J.M., Greenfield, D., Bustamante, C., Liphardt, J.: Light-powering Escherichia coli with proteorhodopsin. Proc. Natl. Acad. Sci. USA 104, 2408 (2007)
[32] 
Weiss, G.H.: Some applications of persistent random walks and the telegrapher’s equation. Physica A 311, 381 (2002). MR1943373. https://doi.org/10.1016/S0378-4371(02)00805-1
[33] 
Zaburdaev, V., Denisov, S., Klafter, J.: Lévy walks. Rev. Mod. Phys. 87, 483 (2015). MR3403266. https://doi.org/10.1103/RevModPhys.87.483

Full article Cited by PDF XML
Full article Cited by PDF XML

Copyright
© 2019 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Telegraph equation with time-dependent velocity run-and-tumble models exact marginal probability distribution

MSC2010
60K35 60K99

Metrics
since March 2018
892

Article info
views

1120

Full article
views

778

PDF
downloads

161

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy