This work is the first part of a project dealing with an in-depth study of effective techniques used in econometrics in order to make accurate forecasts in the concrete framework of one of the major economies of the most productive Italian area, namely the province of Verona. In particular, we develop an approach mainly based on vector autoregressions, where lagged values of two or more variables are considered, Granger causality, and the stochastic trend approach useful to work with the cointegration phenomenon. Latter techniques constitute the core of the present paper, whereas in the second part of the project, we present how these approaches can be applied to economic data at our disposal in order to obtain concrete analysis of import–export behavior for the considered productive area of Verona.
Given a sample from a discretely observed multidimensional compound Poisson process, we study the problem of nonparametric estimation of its jump size density $r_{0}$ and intensity $\lambda _{0}$. We take a nonparametric Bayesian approach to the problem and determine posterior contraction rates in this context, which, under some assumptions, we argue to be optimal posterior contraction rates. In particular, our results imply the existence of Bayesian point estimates that converge to the true parameter pair $(r_{0},\lambda _{0})$ at these rates. To the best of our knowledge, construction of nonparametric density estimators for inference in the class of discretely observed multidimensional Lévy processes, and the study of their rates of convergence is a new contribution to the literature.
A mixture with varying concentrations is a modification of a finite mixture model in which the mixing probabilities (concentrations of mixture components) may be different for different observations. In the paper, we assume that the concentrations are known and the distributions of components are completely unknown. Nonparametric technique is proposed for testing hypotheses on functional moments of components.
We present large sample properties and conditions for asymptotic normality of linear functionals of powers of the periodogram constructed with the use of tapered data.
We deal with a generalization of the classical risk model when an insurance company gets additional funds whenever a claim arrives and consider some practical approaches to the estimation of the ruin probability. In particular, we get an upper exponential bound and construct an analogue to the De Vylder approximation for the ruin probability. We compare results of these approaches with statistical estimates obtained by the Monte Carlo method for selected distributions of claim sizes and additional funds.
Using martingale methods, we provide bounds for the entropy of a probability measure on ${\mathbb{R}}^{d}$ with the right-hand side given in a certain integral form. As a corollary, in the one-dimensional case, we obtain a weighted log-Sobolev inequality.