Heat equation with general stochastic measure colored in time
Volume 1, Issue 2 (2014), pp. 129–138
Pub. online: 5 December 2014
Type: Research Article
Open Access
Received
2 October 2014
2 October 2014
Revised
10 November 2014
10 November 2014
Accepted
13 November 2014
13 November 2014
Published
5 December 2014
5 December 2014
Abstract
A stochastic heat equation on $[0,T]\times \mathbb{R}$ driven by a general stochastic measure $d\mu (t)$ is investigated in this paper. For the integrator μ, we assume the σ-additivity in probability only. The existence, uniqueness, and Hölder regularity of the solution are proved.
References
Curbera, G., Delgado, O.: Optimal domains for ${L}^{0}$-valued operators via stochastic measures. Positivity 11, 399–416 (2007). MR2336205. doi:10.1007/s11117-007-2071-0
Kruse, R., Larsson, S.: Optimal regularity for semilinear stochastic partial differential equations with multiplicative noise. Electron. J. Probab. 17, 65–119 (2012). MR2968672. doi:10.1214/EJP.v17-2240
Kwapień, S., Woyczyński, W.A.: Random Series and Stochastic Integrals: Single and Multiple. Birkhäuser, Boston (1992). MR1167198. doi:10.1007/978-1-4612-0425-1
Mémin, J., Mishura, Y., Valkeila, E.: Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion. Stat. Probab. Lett. 51, 197–206 (2001). MR1822771. doi:10.1016/S0167-7152(00)00157-7
Radchenko, V.: Mild solution of the heat equation with a general stochastic measure. Studia Math. 194, 231–251 (2009). MR2539554. doi:10.4064/sm194-3-2
Radchenko, V.: Stochastic partial differential equations driven by general stochastic measures. In: Korolyuk, V., Limnios, N., Mishura, Y., Sakhno, L., Shevchenko, G. (eds.) Modern Stochastics and Applications, pp. 143–156. Springer, Cham Heidelberg (2014). MR3236073. doi:10.1007/978-3-319-03512-3_9
Radchenko, V., Zähle, M.: Heat equation with a general stochastic measure on nested fractals. Stat. Probab. Lett. 82, 699–704 (2012). MR2887489. doi:10.1016/j.spl.2011.12.013
Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes. Chapman and Hall, London (1994). MR1280932
Tudor, C.A.: Solutions to the linear stochastic heat and wave equation. In: Analysis of Variations for Self-similar Processes. Probability and Its Applications, pp. 27–75. Springer, Cham Heidelberg (2013). doi:10.1007/978-3-319-00936-0_2
Walsh, J.B.: An Introduction to Stochastic Partial Differential Equations. Lect. Notes Math., vol. 1180, pp. 265–439 (1986). MR0876085. doi:10.1007/BFb0074920