Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 1, Issue 2 (2014)
  4. Heat equation with general stochastic me ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Heat equation with general stochastic measure colored in time
Volume 1, Issue 2 (2014), pp. 129–138
Vadym Radchenko  

Authors

 
Placeholder
https://doi.org/10.15559/14-VMSTA14
Pub. online: 5 December 2014      Type: Research Article      Open accessOpen Access

Received
2 October 2014
Revised
10 November 2014
Accepted
13 November 2014
Published
5 December 2014

Abstract

A stochastic heat equation on $[0,T]\times \mathbb{R}$ driven by a general stochastic measure $d\mu (t)$ is investigated in this paper. For the integrator μ, we assume the σ-additivity in probability only. The existence, uniqueness, and Hölder regularity of the solution are proved.

1 Introduction

In this paper, we consider a stochastic heat equation that can formally be written as
(1)
\[\left\{\begin{array}{l}du(t,x)={a}^{2}\displaystyle \frac{{\partial }^{2}u(t,x)}{\partial {x}^{2}}\hspace{0.1667em}dt+f\big(t,x,u(t,x)\big)\hspace{0.1667em}dt+\sigma (t,x)\hspace{0.1667em}d\mu (t),\\{} u(0,x)=u_{0}(x),\end{array}\right.\]
where $(t,x)\in [0,T]\times \mathbb{R}$, $a\in \mathbb{R}$, $a\ne 0$, and μ is a stochastic measure (SM) defined on the Borel σ-algebra of $[0,T]$. We consider a solution to the formal equation (1) in the mild sense (see Eq. (5)). We prove the existence and uniqueness of the solution and obtain Hölder regularity of its paths under some general conditions for the stochastic part of equation.
A similar problem for μ dependent on the spatial variable x was considered in [5]. The stochastic heat equation on fractals was studied in [7], and a review of results on equations driven by SMs is given in [6].
For equations driven by white noise, the regularity of paths of solutions was considered in [10, Chapter 3]. Equations driven by fractional noise were studied in [9, Chapter 2]. In many papers, the regularity of solutions was considered in appropriate function spaces; see, for example, [2] and references therein.

2 Preliminaries

Let $\mathsf{L}_{0}=\mathsf{L}_{0}(\varOmega ,\mathcal{F},\mathsf{P})$ be the set of (equivalence classes of) all real-valued random variables defined on a complete probability space $(\varOmega ,\mathcal{F},\mathsf{P})$. The convergence in $\mathsf{L}_{0}$ is understood as the convergence in probability. Let $\mathsf{X}$ be an arbitrary set, and $\mathcal{B}$ be a σ-algebra of subsets of $\mathsf{X}$.
Definition 1.
Any σ-additive mapping $\mu :\hspace{2.5pt}\mathcal{B}\to \mathsf{L}_{0}$ is called a stochastic measure (SM).
In other words, μ is a vector measure with values in $\mathsf{L}_{0}$. In [3], such μ is called a general SM.
Examples of SMs are the following. Let $\mathsf{X}=[0,T]\subset \mathbb{R}_{+}$, $\mathcal{B}$ be the σ-algebra of Borel subsets of $[0,T]$, and $N(t)$ be a square-integrable martingale. Then $\mu (\mathsf{A})={\int _{0}^{T}}\mathbf{1}_{\mathsf{A}}(t)\hspace{0.1667em}dN(t)$ is an SM. If ${W}^{H}(t)$ is a fractional Brownian motion with Hurst index $H>1/2$ and $f:[0,T]\to \mathbb{R}$ is a bounded measurable function, then $\mu (\mathsf{A})={\int _{0}^{T}}f(t)\mathbf{1}_{\mathsf{A}}(t)\hspace{0.1667em}d{W}^{H}(t)$ is also an SM, as follows from [4, Theorem 1.1]. An α-stable random measure defined on a σ-algebra is an SM [8, Chapter 3]. Theorem 8.3.1 of [3] states the conditions under which the increments of a real-valued Lévy process generate an SM.
For a deterministic measurable function $g:\mathsf{X}\to \mathbb{R}$ and SM μ, an integral of the form $\int _{\mathsf{X}}g\hspace{0.1667em}d\mu $ is defined and studied in [3, Chapter 7]; see also [1]. In particular, every bounded measurable g is integrable w.r.t. any μ. An analogue of the Lebesgue dominated convergence theorem holds for this integral [3, Proposition 7.1.1].
We consider the Besov spaces ${B_{22}^{\alpha }}([c,d])$. Recall that the norm in this classical space for $0<\alpha <1$ may be introduced by
(2)
\[\| g\| _{{B_{22}^{\alpha }}([c,d])}=\| g\| _{\mathsf{L}_{2}([c,d])}+{\Bigg({\int _{0}^{d-c}}\hspace{2.5pt}{\big(w_{2}(g,r)\big)}^{2}{r}^{-2\alpha -1}\hspace{0.1667em}dr\Bigg)}^{1/2},\]
where
\[w_{2}(g,r)=\underset{0\le h\le r}{\sup }{\Bigg({\int _{c}^{d-h}}{\big|g(s+h)-g(s)\big|}^{2}\hspace{0.1667em}ds\Bigg)}^{1/2}.\]
For all $n\ge 1$, $1\le k\le {2}^{n}$, put ${\varDelta _{kn}^{(t)}}=((k-1){2}^{-n}t,k{2}^{-n}t]$.
The following estimate is a key tool for the proof of Hölder regularity of the stochastic integral. In our estimates, C and $C(\omega )$ will denote a constant and a random constant, respectively, which may be different from formula to formula.
Lemma 1 (Lemma 3.2 [5]).
Let SM μ be defined on the Borel σ-algebra of $[0,t]$, $\mathsf{Z}$ be an arbitrary set, and $q(z,s):\mathsf{Z}\times [0,t]\to \mathbb{R}$ be a function such that for some $1/2<\alpha <1$ and for each $z\in \mathsf{Z}$, $q(z,\cdot )\in {B_{22}^{\alpha }}([0,t])$. Then the random function
\[\eta (z)=\int _{[0,t]}q(z,s)\hspace{0.1667em}d\mu (s),\hspace{1em}z\in \mathsf{Z},\]
has a version $\tilde{\eta }(z)$ such that for some constant C (independent of z, ω) and each $\omega \in \varOmega $,
(3)
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \big|\tilde{\eta }(z)\big|\le & \displaystyle \big|q(z,0)\mu \big([0,t]\big)\big|\\{} & \displaystyle +C\big\| q(z,\cdot )\big\| _{{B_{22}^{\alpha }}([0,t])}{\bigg\{\sum \limits_{n\ge 1}{2}^{n(1-2\alpha )}\sum \limits_{1\le k\le {2}^{n}}{\big|\mu \big({\varDelta _{kn}^{(t)}}\big)\big|}^{2}\bigg\}}^{1/2}.\end{array}\]
From Lemma 3.1 [5] it follows that, for $\varepsilon >0$,
(4)
\[\sum \limits_{n\ge 1}{2}^{-n\varepsilon }\sum \limits_{1\le k\le {2}^{n}}{\big|\mu \big({\varDelta _{kn}^{(t)}}\big)\big|}^{2}<+\infty \hspace{1em}\mathrm{a}.\hspace{2.5pt}\mathrm{s}.\]

3 The problem

Consider equation (1) in the following mild sense:
(5)
\[\begin{array}{r@{\hskip0pt}l}\displaystyle u(t,x)=& \displaystyle \int _{\mathbb{R}}p(t,x-y)u_{0}(y)\hspace{0.1667em}dy+{\int _{0}^{t}}\hspace{0.1667em}ds\int _{\mathbb{R}}p(t-s,x-y)f\big(s,y,u(s,y)\big)\hspace{0.1667em}dy\\{} & \displaystyle +\int _{(0,t]}\hspace{0.1667em}d\mu (s)\int _{\mathbb{R}}p(t-s,x-y)\sigma (s,y)\hspace{0.1667em}dy.\end{array}\]
Here
(6)
\[p(t,x)=\frac{1}{2a\sqrt{\pi t}}\hspace{0.1667em}{e}^{-\frac{{x}^{2}}{4{a}^{2}t}}\]
is the Gaussian heat kernel, $u(t,x)=u(t,x,\omega ):[0,T]\times \mathbb{R}\times \varOmega \to \mathbb{R}$ is an unknown measurable random function, and μ is an SM defined on the Borel σ-algebra of $[0,T]$. The integrals of random functions w.r.t. $dy$ and $ds$ are taken for each fixed $\omega \in \varOmega $.
Throughout this paper, we will use the following assumptions.
  • A1. $u_{0}(y)=u_{0}(y,\omega ):\mathbb{R}\times \varOmega \to \mathbb{R}$ is measurable and ω-wise bounded, $|u_{0}(y,\omega )|\le C(\omega )$.
  • A2. $u_{0}(y)$ is Hölder continuous:
    \[\big|u_{0}(y_{1})-u_{0}(y_{2})\big|\le C(\omega )|y_{1}-y_{2}{|}^{\beta (u_{0})},\hspace{1em}\beta (u_{0})\ge 1/2.\]
  • A3. $f(s,y,v):[0,T]\times \mathbb{R}\times \mathbb{R}\to \mathbb{R}$ is measurable and bounded: $|f(s,y,v)|\le C$.
  • A4. $f(s,y,v)$ is uniformly Lipschitz in $y,v\in \mathbb{R}$:
    \[\big|f(s,y_{1},v_{1})-f(s,y_{2},v_{2})\big|\le C\big(|y_{1}-y_{2}|+|v_{1}-v_{2}|\big).\]
  • A5. $\sigma (s,y):[0,T]\times \mathbb{R}\to \mathbb{R}$ is measurable and bounded: $|\sigma (s,y)|\le C$.
  • A6. $\sigma (s,y)$ is Hölder continuous:
    \[\big|\sigma (s_{1},y_{1})-\sigma (s_{2},y_{2})\big|\le C\big(|s_{1}-s_{2}{|}^{\beta (\sigma )}+|y_{1}-y_{2}{|}^{\beta (\sigma )}\big),\hspace{1em}\beta (\sigma )>1/2.\]
  • A7. μ is Hölder continuous:
    \[\big|\mu \big((s_{1},s_{2}]\big)\big|\le C(\omega )|s_{1}-s_{2}{|}^{\beta (\mu )},\hspace{1em}s_{1},s_{2}\in [0,T],\hspace{2.5pt}\beta (\mu )>0.\]
Recall that $\int _{\mathbb{R}}p(t,x)\hspace{0.1667em}dx=1$.

4 Hölder continuity in x

Consider the regularity of paths of the stochastic integral from (5).
Lemma 2.
Let Assumptions A5 and A6 hold. Then, for any fixed $t\in [0,T]$ and $\gamma _{1}<\beta (\sigma )-1/2$, the stochastic function
\[\vartheta (x)=\int _{(0,t]}\hspace{0.1667em}d\mu (s)\int _{\mathbb{R}}p(t-s,x-y)\sigma (s,y)\hspace{0.1667em}dy,\hspace{1em}x\in \mathbb{R},\]
has a Hölder continuous version with exponent $\gamma _{1}$.
Proof.
Denote
\[q(z,s)=\int _{\mathbb{R}}\big(p(t-s,x_{1}-y)-p(t-s,x_{2}-y)\big)\sigma (s,y)\hspace{0.1667em}dy,\hspace{1em}z=(x_{1},x_{2},t),\]
and apply (3) to $\eta (z)=\vartheta (x_{1})-\vartheta (x_{2})$. We will estimate the Besov space norm in (3). Consider the difference
(7)
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle q(z,s+h)-q(z,s)\\{} & \displaystyle \hspace{1em}=\bigg(\int _{\mathbb{R}}p(t-s-h,x_{1}-y)\sigma (s+h,y)\hspace{0.1667em}dy-\int _{\mathbb{R}}p(t-s,x_{1}-y)\sigma (s,y)\hspace{0.1667em}dy\bigg)\\{} & \displaystyle \hspace{2em}-\bigg(\int _{\mathbb{R}}p(t-s-h,x_{2}-y)\sigma (s+h,y)\hspace{0.1667em}dy-\int _{\mathbb{R}}p(t-s,x_{2}-y)\sigma (s,y)\hspace{0.1667em}dy\bigg)\\{} & \displaystyle \hspace{1em}:=D_{1}-D_{2}.\end{array}\]
Using (6) and the change of variables
\[v=\frac{x_{1}-y}{2a\sqrt{t-s-h}},\hspace{2em}v=\frac{x_{1}-y}{2a\sqrt{t-s}},\]
we get
(8)
\[\begin{array}{r@{\hskip0pt}l}\displaystyle |D_{1}|& \displaystyle =C\Bigg|\int _{\mathbb{R}}{e}^{-{v}^{2}}\sigma (s+h,x_{1}-2av\sqrt{t-s-h})\hspace{0.1667em}dv\\{} & \displaystyle \hspace{1em}-\int _{\mathbb{R}}{e}^{-{v}^{2}}\sigma (s,x_{1}-2av\sqrt{t-s})\hspace{0.1667em}dv\Bigg|\\{} & \displaystyle \stackrel{\mathrm{A}\mathrm{6}}{\le }C\int _{\mathbb{R}}{e}^{-{v}^{2}}\big(|h{|}^{\beta (\sigma )}+{\big|v(\sqrt{t-s-h}-\sqrt{t-s})\big|}^{\beta (\sigma )}\big)\hspace{0.1667em}dv\\{} & \displaystyle =C\int _{\mathbb{R}}{e}^{-{v}^{2}}\bigg(|h{|}^{\beta (\sigma )}+\frac{|v{|}^{\beta (\sigma )}|h{|}^{\beta (\sigma )}}{|\sqrt{t-s-h}+\sqrt{t-s}{|}^{\beta (\sigma )}}\bigg)\hspace{0.1667em}dv\\{} & \displaystyle \le C|h{|}^{\beta (\sigma )}\int _{\mathbb{R}}{e}^{-{v}^{2}}\bigg(1+\frac{|v{|}^{\beta (\sigma )}}{{\sqrt{t-s}}^{\beta (\sigma )}}\bigg)\hspace{0.1667em}dv=C|h{|}^{\beta (\sigma )}{(t-s)}^{-\beta (\sigma )/2}.\end{array}\]
By a similar way, we can estimate $|D_{2}|$ and obtain
(9)
\[\big|q(z,s+h)-q(z,s)\big|\le C|h{|}^{\beta (\sigma )}{(t-s)}^{-\beta (\sigma )/2}.\]
Further, consider
\[\begin{array}{r@{\hskip0pt}l}\displaystyle q(z,s+h)-q(z,s)=& \displaystyle \bigg(\int _{\mathbb{R}}p(t-s-h,x_{1}-y)\sigma (s+h,y)\hspace{0.1667em}dy\\{} & \displaystyle -\int _{\mathbb{R}}p(t-s-h,x_{2}-y)\sigma (s+h,y)\hspace{0.1667em}dy\bigg)\\{} & \displaystyle -\bigg(\int _{\mathbb{R}}p(t-s,x_{1}-y)\sigma (s,y)\hspace{0.1667em}dy\\{} & \displaystyle -\int _{\mathbb{R}}p(t-s,x_{2}-y)\sigma (s,y)\hspace{0.1667em}dy\bigg):=E_{1}-E_{2}.\end{array}\]
Using (6) and the substitutions
\[v=\frac{x_{1}-y}{2a\sqrt{t-s-h}},\hspace{1em}v=\frac{x_{2}-y}{2a\sqrt{t-s-h}},\]
we get
\[\begin{array}{r@{\hskip0pt}l}\displaystyle |E_{1}|& \displaystyle =C\Bigg|\int _{\mathbb{R}}{e}^{-{v}^{2}}\sigma (s+h,x_{1}-2av\sqrt{t-s-h})\hspace{0.1667em}dv\\{} & \displaystyle \hspace{1em}-\int _{\mathbb{R}}{e}^{-{v}^{2}}\sigma (s+h,x_{2}-2av\sqrt{t-s-h})\hspace{0.1667em}dv\Bigg|\\{} & \displaystyle \stackrel{\mathrm{A}\mathrm{6}}{\le }C\int _{\mathbb{R}}{e}^{-{v}^{2}}|x_{1}-x_{2}{|}^{\beta (\sigma )}\hspace{0.1667em}dv=C|x_{1}-x_{2}{|}^{\beta (\sigma )}.\end{array}\]
Similarly, we can estimate $|E_{2}|$ (we consider $|E_{1}|$ for $h=0$) and obtain
(10)
\[\big|q(z,s+h)-q(z,s)\big|\le C|x_{1}-x_{2}{|}^{\beta (\sigma )}.\]
The product of (9) raised to the power λ and (10) raised to the power $1-\lambda $, $0<\lambda <1$, now satisfies
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \big|q(z,s+h)-q(z,s)\big|& \displaystyle \le C|h{|}^{\lambda \beta (\sigma )}{(t-s)}^{-\beta (\sigma )\lambda /2}|x_{1}-x_{2}{|}^{(1-\lambda )\beta (\sigma )},\\{} \displaystyle w_{2}\big(q(z,\cdot ),r\big)& \displaystyle \le C{r}^{\lambda \beta (\sigma )}|x_{1}-x_{2}{|}^{(1-\lambda )\beta (\sigma )}.\end{array}\]
If $\lambda \beta (\sigma )>1/2$, then the integral from (2) is finite for some $\alpha >1/2$. In this case, the integral does not exceed $C|x_{1}-x_{2}{|}^{(1-\lambda )\beta (\sigma )}$.
From the estimate of $E_{1}$ for $h=0$ we obtain
\[\big|q(z,0)\big|\le C|x_{1}-x_{2}{|}^{\beta (\sigma )},\hspace{2em}\big\| q(z,\cdot )\big\| _{\mathsf{L}_{2}([0,t])}\le C|x_{1}-x_{2}{|}^{\beta (\sigma )}.\]
Therefore, we have
\[\big|\vartheta (x_{1})-\vartheta (x_{2})\big|\le C(\omega )|x_{1}-x_{2}{|}^{\gamma _{1}},\hspace{1em}\gamma _{1}=(1-\lambda )\beta (\sigma ).\]
Under the restriction $\lambda \beta (\sigma )>1/2$, we can get any $\gamma _{1}<\beta (\sigma )-1/2$.  □

5 Hölder continuity in t

Lemma 3.
Assume that Assumptions A5, A6, and A7 hold. Then, if $\gamma _{2}\le \beta (\mu )$ and $\gamma _{2}<\beta (\sigma )-1/2$, then for any fixed $x\in \mathbb{R}$, the stochastic process
\[\bar{\vartheta }(t)=\int _{(0,t]}\hspace{0.1667em}d\mu (s)\int _{\mathbb{R}}p(t-s,x-y)\sigma (s,y)\hspace{0.1667em}dy,\hspace{1em}t\in [0,T],\]
has a Hölder continuous version with exponent $\gamma _{2}$.
Proof.
For $t_{1}<t_{2}$, we have
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \bar{\vartheta }(t_{2})-\bar{\vartheta }(t_{1})& \displaystyle =\int _{(t_{1},t_{2}]}\hspace{0.1667em}d\mu (s)\int _{\mathbb{R}}p(t_{2}-s,x-y)\sigma (s,y)\hspace{0.1667em}dy\\{} & \displaystyle \hspace{1em}+\int _{(0,t_{1}]}\hspace{0.1667em}d\mu (s)\int _{\mathbb{R}}\big(p(t_{2}-s,x-y)-p(t_{1}-s,x-y)\big)\sigma (s,y)\hspace{0.1667em}dy\\{} & \displaystyle :=F_{1}+F_{2}.\end{array}\]
Step 1. Estimation of $\boldsymbol{F}_{\mathbf{1}}$. Consider segments $[0,T]$, ${\varDelta _{kn}^{(T)}}=((k-1){2}^{-n}T,k{2}^{-n}T]$, and the function
\[\bar{q}(z,s)=\int _{\mathbb{R}}p(t_{2}-s,x-y)\sigma (s,y)\hspace{0.1667em}dy,\hspace{1em}s\in [t_{1},t_{2}],\hspace{2.5pt}z=(x,t_{2}).\]
From the estimates of $D_{1}$ in (7) and (8) it follows that
(11)
\[\big|\bar{q}(z,s+h)-\bar{q}(z,s)\big|\le C|h{|}^{\beta (\sigma )}{(t_{2}-s)}^{-\beta (\sigma )/2},\hspace{1em}s\in [t_{1}-h,t_{2}-h).\]
Let $k_{n1}$ and $k_{n2}$ be such that $t_{1}\in {\varDelta _{k_{n1}n}^{(T)}}$, $t_{2}\in {\varDelta _{k_{n2}n}^{(T)}}$. For the functions
\[\bar{q}_{n}(z,s)=\sum \limits_{k=1}^{{2}^{n}}\bar{q}\big(z,(k-1){2}^{-n}T\vee t_{1}\wedge t_{2}\big)\mathbf{1}_{{\varDelta _{kn}^{(T)}}}(s),\]
the analogue of the Lebesgue theorem [3, Proposition 7.1.1] implies that
(12)
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \Bigg|\int _{(t_{1},t_{2}]}\bar{q}(z,s)\hspace{0.1667em}d\mu (s)\Bigg|=\Bigg|\mathrm{p}\underset{n\to \infty }{\lim }\int _{(t_{1},t_{2}]}\bar{q}_{n}(z,s)\hspace{0.1667em}d\mu (s)\Bigg|\\{} & \displaystyle \hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{1em}=\Bigg|\int _{(t_{1},t_{2}]}\bar{q}_{0}(z,s)\hspace{0.1667em}d\mu (s)+\sum \limits_{n=1}^{\infty }\bigg(\int _{(t_{1},t_{2}]}\bar{q}_{n}(z,s)\hspace{0.1667em}d\mu (s)-\int _{(t_{1},t_{2}]}\bar{q}_{n-1}(z,s)\hspace{0.1667em}d\mu (s)\bigg)\Bigg|\\{} & \displaystyle \hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{1em}\le \big|\bar{q}(z,t_{1})\mu \big((t_{1},t_{2}]\big)\big|+\sum \limits_{n=n_{0}}^{\infty }\big|\big(\bar{q}\big(z,k_{n1}{2}^{-n}T\big)-\bar{q}(z,t_{1})\big)\mu \big({\varDelta _{(k_{n1}+1)n}^{(T)}}\big)\big|\\{} & \displaystyle \hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{2em}+\sum \limits_{n=n_{0}}^{\infty }\sum \limits_{k:k_{n1}\le 2k-2<k_{n2}-2}\big|\big(\bar{q}\big(z,(2k-1){2}^{-n}T\big)-\bar{q}\big(z,(2k-2){2}^{-n}T\big)\big)\mu \big({\varDelta _{(2k)n}^{(T)}}\big)\big|\\{} & \displaystyle \hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{2em}+\sum \limits_{n=n_{0}}^{\infty }\big|\big(\bar{q}\big(z,(k_{n2}-1){2}^{-n}T\big)-\bar{q}\big(z,(k_{n2}-2){2}^{-n}T\big)\big)\mu \big(\big((k_{n2}-1){2}^{-n}T,t_{2}\big]\big)\big|.\end{array}\]
Here $n_{0}$ is such that
(13)
\[{2}^{-n_{0}}T<t_{2}-t_{1}\le {2}^{-n_{0}+1}T.\]
We have
(14)
\[k_{n2}-k_{n1}\le (t_{2}-t_{1}){2}^{n+2}/T,\hspace{1em}n\ge n_{0}.\]
Applying Assumptions A5, A7, (11), and the Cauchy inequality from (12) for $0<\varepsilon <2\beta (\sigma )-1$, we obtain
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \Bigg|\int _{(t_{1},t_{2}]}\bar{q}(z,s)\hspace{0.1667em}d\mu (s)\Bigg|\\{} & \displaystyle \hspace{1em}\le C(\omega ){(t_{2}-t_{1})}^{\beta (\mu )}+C(\omega )\sum \limits_{n=n_{0}}^{\infty }{2}^{-n\beta (\mu )}\\{} & \displaystyle \hspace{2em}+C\sum \limits_{n=n_{0}}^{\infty }\sum \limits_{k:k_{n1}\le 2k-2<k_{n2}-2}{2}^{-n\beta (\sigma )}{\big(t_{2}-(2k-2){2}^{-n}T\big)}^{-\beta (\sigma )/2}\big|\mu \big({\varDelta _{(2k)n}^{(T)}}\big)\big|\\{} & \displaystyle \hspace{2em}+C(\omega )\sum \limits_{n=n_{0}}^{\infty }{2}^{-n\beta (\mu )}\\{} & \displaystyle \hspace{1em}\le C(\omega ){(t_{2}-t_{1})}^{\beta (\mu )}+C(\omega ){2}^{-n_{0}\beta (\mu )}\\{} & \displaystyle \hspace{2em}+C{\Bigg(\sum \limits_{n=n_{0}}^{\infty }{2}^{\varepsilon n}{2}^{-2n\beta (\sigma )}\sum \limits_{k:k_{n1}\le 2k-2<k_{n2}-2}{\big(t_{2}-(2k-2){2}^{-n}T\big)}^{-\beta (\sigma )}\Bigg)}^{1/2}\\{} & \displaystyle \hspace{2em}\times {\Bigg(\sum \limits_{n=0}^{\infty }{2}^{-\varepsilon n}\sum \limits_{k=1}^{{2}^{n}}{\mu }^{2}\big({\varDelta _{kn}^{(T)}}\big)\Bigg)}^{1/2}\\{} & \displaystyle \stackrel{\text{(4)},\text{(13)}}{\le }C(\omega ){(t_{2}-t_{1})}^{\beta (\mu )}\\{} & \displaystyle \hspace{2em}+C(\omega ){\Bigg(\sum \limits_{n=n_{0}}^{\infty }{2}^{\varepsilon n}{2}^{-2n\beta (\sigma )}\sum \limits_{1\le i<(k_{n2}-k_{n1})/2}{\big(i{2}^{-n}T\big)}^{-\beta (\sigma )}\Bigg)}^{1/2}\\{} & \displaystyle \hspace{1em}\le C(\omega ){(t_{2}-t_{1})}^{\beta (\mu )}+C(\omega ){\Bigg(\sum \limits_{n=n_{0}}^{\infty }{2}^{n(\varepsilon -\beta (\sigma ))}{(k_{n2}-k_{n1})}^{1-\beta (\sigma )}\Bigg)}^{1/2}\\{} & \displaystyle \hspace{1em}\stackrel{\text{(14)}}{\le }C(\omega ){(t_{2}-t_{1})}^{\beta (\mu )}+C(\omega ){(t_{2}-t_{1})}^{(1-\beta (\sigma ))/2}{2}^{-n_{0}(2\beta (\sigma )-\varepsilon -1)/2}\\{} & \displaystyle \hspace{1em}\stackrel{\text{(13)}}{\le }C(\omega ){(t_{2}-t_{1})}^{\beta (\mu )}+C(\omega ){(t_{2}-t_{1})}^{(\beta (\sigma )-\varepsilon )/2}\le C(\omega ){(t_{2}-t_{1})}^{\gamma _{2}}.\end{array}\]
Step 2. Estimation of $\boldsymbol{F}_{\mathbf{2}}$. Now denote
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \tilde{q}(z,s)=\int _{\mathbb{R}}\big(p(t_{2}-s,x-y)-p(t_{1}-s,x-y)\big)\sigma (s,y)\hspace{0.1667em}dy,\\{} & \displaystyle \hspace{1em}s\in [0,t_{1}],\hspace{2.5pt}z=(x,t_{1},t_{2}).\end{array}\]
Using the change of variables
\[v=\frac{x-y}{2a\sqrt{t_{2}-s}},\hspace{2em}v=\frac{x-y}{2a\sqrt{t_{1}-s}},\]
we get
(15)
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \big|\tilde{q}(z,s)\big|=& \displaystyle C\Bigg|\int _{\mathbb{R}}{e}^{-{v}^{2}}\sigma (s,x-2av\sqrt{t_{2}-s})\hspace{0.1667em}dv\\{} & \displaystyle -\int _{\mathbb{R}}{e}^{-{v}^{2}}\sigma (s,x-2av\sqrt{t_{1}-s})\hspace{0.1667em}dv\Bigg|\\{} \displaystyle \stackrel{\mathrm{A}\mathrm{6}}{\le }& \displaystyle C\int _{\mathbb{R}}{e}^{-{v}^{2}}{\big|v(\sqrt{t_{2}-s}-\sqrt{t_{1}-s})\big|}^{\beta (\sigma )}\hspace{0.1667em}dv\\{} \displaystyle \stackrel{\text{(8)}}{\le }& \displaystyle C{(t_{2}-t_{1})}^{\beta (\sigma )}{(t_{2}-s)}^{-\beta (\sigma )/2}.\end{array}\]
Also, analogously to (7) and (8), we have
(16)
\[\big|\tilde{q}(z,s+h)-\tilde{q}(z,s)\big|\le C|h{|}^{\beta (\sigma )}{(t_{1}-s)}^{-\beta (\sigma )/2}.\]
From (15) and (16) for $0<\lambda <1$ and $0\le s\le t_{1}-h$, we obtain
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \big|\tilde{q}(z,s+h)-\tilde{q}(z,s)\big|\\{} & \displaystyle \hspace{1em}\le C|h{|}^{\lambda \beta (\sigma )}{(t_{1}-s)}^{-\beta (\sigma )\lambda /2}{(t_{2}-t_{1})}^{(1-\lambda )\beta (\sigma )}{(t_{2}-s-h)}^{-(1-\lambda )\beta (\sigma )/2},\\{} & \displaystyle w_{2}\big(\tilde{q}(z,\cdot ),r\big)\le C{r}^{\lambda \beta (\sigma )}{(t_{2}-t_{1})}^{(1-\lambda )\beta (\sigma )}.\end{array}\]
If $\lambda \beta (\sigma )>1/2\Leftrightarrow (1-\lambda )\beta (\sigma )<\beta (\sigma )-1/2$, then the integral from (2) is finite for some $\alpha >1/2$. In this case, the integral does not exceed $C{(t_{2}-t_{1})}^{(1-\lambda )\beta (\sigma )}$.
From (15) we get
\[\big|\tilde{q}(z,0)\big|\le C{(t_{2}-t_{1})}^{\beta (\sigma )/2},\hspace{2em}\big\| \tilde{q}(z,\cdot )\big\| _{\mathsf{L}_{2}([0,t_{1}])}\le C{(t_{2}-t_{1})}^{\beta (\sigma )/2}.\]
Therefore, from (3) we have $|F_{2}|\le C(\omega ){(t_{2}-t_{1})}^{\gamma _{2}}$, which finishes the proof.  □

6 Solution to the equation

Theorem 1.
Suppose that Assumptions A1–A6 hold.
  • 1. Equation (5) has a solution $u(t,x)$. If $v(t,x)$ is another solution to (5), then for all t and x, $u(t,x)=v(t,x)$ a.s.
  • 2. For any fixed $t\in [0,T]$ and $\gamma _{1}<\beta (\sigma )-1/2$, the stochastic function $u(t,x)$, $x\in \mathbb{R}$, has a Hölder continuous version with exponent $\gamma _{1}$.
  • 3. In addition, let Assumption A7 hold. Then for any fixed $\delta >0$ and $\gamma _{1}$, $\gamma _{2}$ such that $\gamma _{1}<\beta (\sigma )-1/2$, $\gamma _{2}\le \beta (\mu )$, and $\gamma _{2}<\beta (\sigma )-1/2$, the stochastic function $u(t,x)$ has a version $\tilde{u}(t,x)$ such that
    (17)
    \[\begin{array}{r@{\hskip0pt}l}& \displaystyle \big|\tilde{u}(t_{1},x_{1})-\tilde{u}(t_{2},x_{2})\big|\le C(\omega )\big(|t_{1}-t_{2}{|}^{\gamma _{2}}+|x_{1}-x_{2}{|}^{\gamma _{1}}\big),\\{} & \displaystyle \hspace{1em}t_{i}\in [\delta ,T],\hspace{2.5pt}x_{i}\in \mathbb{R}.\end{array}\]
Proof.
Consider the standard iteration process. Take ${u}^{(0)}(t,x)=0$ and set
\[\begin{array}{r@{\hskip0pt}l}\displaystyle {u}^{(n+1)}(t,x)& \displaystyle =\int _{\mathbb{R}}p(t,x-y)u_{0}(y)\hspace{0.1667em}dy\\{} & \displaystyle \hspace{1em}+{\int _{0}^{t}}\hspace{0.1667em}ds\int _{\mathbb{R}}p(t-s,x-y)f\big(s,y,{u}^{(n)}(s,y)\big)\hspace{0.1667em}dy\\{} & \displaystyle \hspace{1em}+\int _{(0,t]}\hspace{0.1667em}d\mu (s)\int _{\mathbb{R}}p(t-s,x-y)\sigma (s,y)\hspace{0.1667em}dy.\end{array}\]
Further, we can repeat the proof of Theorem [5]. Instead of reference to Lemmas 5.1 and 6.1 of [5], we can refer to Lemmas 2 and 3 of this paper.  □
Remark 1.
For u, we obtained less regularity than for elements of equation (5). However, a solution to a heat equation usually has the same regularity or even more regular than the coefficients. One may expect that using other methods gives (17) with exponents $\gamma _{2}\le \beta (\mu )\wedge \gamma _{2}<\beta (\sigma )$ and $\gamma _{1}<\beta (\sigma )$.

References

[1] 
Curbera, G., Delgado, O.: Optimal domains for ${L}^{0}$-valued operators via stochastic measures. Positivity 11, 399–416 (2007). MR2336205. doi:10.1007/s11117-007-2071-0
[2] 
Kruse, R., Larsson, S.: Optimal regularity for semilinear stochastic partial differential equations with multiplicative noise. Electron. J. Probab. 17, 65–119 (2012). MR2968672. doi:10.1214/EJP.v17-2240
[3] 
Kwapień, S., Woyczyński, W.A.: Random Series and Stochastic Integrals: Single and Multiple. Birkhäuser, Boston (1992). MR1167198. doi:10.1007/978-1-4612-0425-1
[4] 
Mémin, J., Mishura, Y., Valkeila, E.: Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion. Stat. Probab. Lett. 51, 197–206 (2001). MR1822771. doi:10.1016/S0167-7152(00)00157-7
[5] 
Radchenko, V.: Mild solution of the heat equation with a general stochastic measure. Studia Math. 194, 231–251 (2009). MR2539554. doi:10.4064/sm194-3-2
[6] 
Radchenko, V.: Stochastic partial differential equations driven by general stochastic measures. In: Korolyuk, V., Limnios, N., Mishura, Y., Sakhno, L., Shevchenko, G. (eds.) Modern Stochastics and Applications, pp. 143–156. Springer, Cham Heidelberg (2014). MR3236073. doi:10.1007/978-3-319-03512-3_9
[7] 
Radchenko, V., Zähle, M.: Heat equation with a general stochastic measure on nested fractals. Stat. Probab. Lett. 82, 699–704 (2012). MR2887489. doi:10.1016/j.spl.2011.12.013
[8] 
Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes. Chapman and Hall, London (1994). MR1280932
[9] 
Tudor, C.A.: Solutions to the linear stochastic heat and wave equation. In: Analysis of Variations for Self-similar Processes. Probability and Its Applications, pp. 27–75. Springer, Cham Heidelberg (2013). doi:10.1007/978-3-319-00936-0_2
[10] 
Walsh, J.B.: An Introduction to Stochastic Partial Differential Equations. Lect. Notes Math., vol. 1180, pp. 265–439 (1986). MR0876085. doi:10.1007/BFb0074920
Reading mode PDF XML

Table of contents
  • 1 Introduction
  • 2 Preliminaries
  • 3 The problem
  • 4 Hölder continuity in x
  • 5 Hölder continuity in t
  • 6 Solution to the equation
  • References

Copyright
© 2014 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Stochastic measure stochastic heat equation mild solution Hölder regularity Besov space

MSC2010
60H15 60G17 60G57

Metrics
since March 2018
489

Article info
views

417

Full article
views

317

PDF
downloads

168

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

  • Theorems
    1
Theorem 1.
Theorem 1.
Suppose that Assumptions A1–A6 hold.
  • 1. Equation (5) has a solution $u(t,x)$. If $v(t,x)$ is another solution to (5), then for all t and x, $u(t,x)=v(t,x)$ a.s.
  • 2. For any fixed $t\in [0,T]$ and $\gamma _{1}<\beta (\sigma )-1/2$, the stochastic function $u(t,x)$, $x\in \mathbb{R}$, has a Hölder continuous version with exponent $\gamma _{1}$.
  • 3. In addition, let Assumption A7 hold. Then for any fixed $\delta >0$ and $\gamma _{1}$, $\gamma _{2}$ such that $\gamma _{1}<\beta (\sigma )-1/2$, $\gamma _{2}\le \beta (\mu )$, and $\gamma _{2}<\beta (\sigma )-1/2$, the stochastic function $u(t,x)$ has a version $\tilde{u}(t,x)$ such that
    (17)
    \[\begin{array}{r@{\hskip0pt}l}& \displaystyle \big|\tilde{u}(t_{1},x_{1})-\tilde{u}(t_{2},x_{2})\big|\le C(\omega )\big(|t_{1}-t_{2}{|}^{\gamma _{2}}+|x_{1}-x_{2}{|}^{\gamma _{1}}\big),\\{} & \displaystyle \hspace{1em}t_{i}\in [\delta ,T],\hspace{2.5pt}x_{i}\in \mathbb{R}.\end{array}\]

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy