Studies on generalized Yule models
Volume 6, Issue 1 (2019), pp. 41–55
Pub. online: 3 December 2018
Type: Research Article
Open Access
Received
16 July 2018
16 July 2018
Revised
10 November 2018
10 November 2018
Accepted
16 November 2018
16 November 2018
Published
3 December 2018
3 December 2018
Abstract
We present a generalization of the Yule model for macroevolution in which, for the appearance of genera, we consider point processes with the order statistics property, while for the growth of species we use nonlinear time-fractional pure birth processes or a critical birth-death process. Further, in specific cases we derive the explicit form of the distribution of the number of species of a genus chosen uniformly at random for each time. Besides, we introduce a time-changed mixed Poisson process with the same marginal distribution as that of the time-fractional Poisson process.
References
Athreya, K.B.: Preferential attachment random graphs with general weight function. Internet Math. 4(4), 401–418 (2007). MR2522950. https://doi.org/10.1080/15427951.2007.10129150
Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999). MR2091634. https://doi.org/10.1126/science.286.5439.509
Beghin, L., Orsingher, E.: Fractional Poisson processes and related planar random motions. Electron. J. Probab. 14(61), 1790–1827 (2009). MR2535014. https://doi.org/10.1214/EJP.v14-675
Beghin, L., Orsingher, E.: Poisson-type processes governed by fractional and higher-order recursive differential equations. Electron. J. Probab. 15(22), 684–709 (2010). MR2650778. https://doi.org/10.1214/EJP.v15-762
Berger, N., Borgs, C., Chayes, J.T., Saberi, A.: Asymptotic behavior and distributional limits of preferential attachment graphs. Ann. Probab. 42(1), 1–40 (2014). MR3161480. https://doi.org/10.1214/12-AOP755
Bollobás, B., Riordan, O.: The diameter of a scale-free random graph. Combinatorica 24(1), 5–34 (2004). MR2057681. https://doi.org/10.1007/s00493-004-0002-2
Bollobás, B., Riordan, O., Spencer, J., Tusnády, G.: The degree sequence of a scale-free random graph process. Random Struct. Algorithms 18(3), 279–290 (2001). MR1824277. https://doi.org/10.1002/rsa.1009
Borgs, C., Chayes, J., Daskalakis, C., Roch, S.: First to Market is Not Everything: An Analysis of Preferential Attachment with Fitness. In: Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of Computing, pp. 135–144, ACM, New York, NY, USA (2007). ISBN 978-1-59593-631-8. MR2402437. https://doi.org/10.1145/1250790.1250812
Chan, D.Y.C., Hughes, B.D., Leong, A.S., Reed, W.J.: Stochastically evolving networks. Phys. Rev. E 68(6), 066124 (2003). MR2060980. https://doi.org/10.1103/PhysRevE.68.066124
Crump, K.S.: On point processes having an order statistic structure. Sankhyā Ser. A 37(3), 396–404 (1975). MR0438474
Deffner, A., Haeusler, E.: A characterization of order statistic point processes that are mixed Poisson processes and mixed sample processes simultaneously. J. Appl. Probab. 22(2), 314–323 (1985). ISSN
0021-9002. MR0789355. https://doi.org/10.2307/3213775
Deijfen, M., van den Esker, H., van der Hofstad, R., Hooghiemst, G.: A preferential attachment model with random initial degrees. Ark. Mat. 47(1), 41–72 (2009). MR2480915. https://doi.org/10.1007/s11512-007-0067-4
Dereich, S., Ortgiese, M.: Robust Analysis of Preferential Attachment Models with Fitness. Comb. Probab. Comput. 23, 386–411 (2014). MR3189418. https://doi.org/10.1017/S0963548314000157
D’Ovidio, M.: On the fractional counterpart of the higher-order equations. Stat. Probab. Lett. 81(12), 1929–1939 (2011). ISSN
0167-7152. MR2845910. https://doi.org/10.1016/j.spl.2011.08.004
Faloutsos, M., Faloutsos, P., Faloutsos, C.: On Power-law Relationships of the Internet Topology. SIGCOMM Comput. Commun. Rev. 29(4), 251–262 (1999). https://doi.org/10.1145/316194.316229
Feigin, P.D.: On the characterization of point processes with the order statistic property. J. Appl. Probab. 16(2), 297–304 (1979). MR0531764. https://doi.org/10.2307/3212898
Garavaglia, A., van der Hofstad, R., Woeginger, G.: The Dynamics of Power laws: Fitness and Aging in Preferential Attachment Trees. J. Stat. Phys. 168(6), 1137–1179 (2017). MR3691245. https://doi.org/10.1007/s10955-017-1841-8
Garra, R., Garrappa, R.: The Prabhakar or three parameter Mittag-Leffler function: theory and application. Commun. Nonlinear Sci. Numer. Simul. 56, 314–329 (2018). MR3709831. https://doi.org/10.1016/j.cnsns.2017.08.018
Grandell, J.: Mixed Poisson processes. Monographs on Statistics and Applied Probability., vol. 77. Chapman & Hall, London (1997). ISBN 0-412-78700-8. MR1463943. https://doi.org/10.1007/978-1-4899-3117-7
Kilbas, A.A., Saigo, M., Saxena, R.K.: Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transforms Spec. Funct. 15(1), 31–49 (2004). MR2033353. https://doi.org/10.1080/10652460310001600717
Kleinberg, J., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.S.: The Web As a Graph: Measurements, Models, and Methods. In: Proceedings of the 5th Annual International Conference on Computing and Combinatorics, COCOON’99, pp. 1–17, Springer-Verlag, Berlin, Heidelberg (1999). ISBN 3-540-66200-6. MR1730317. https://doi.org/10.1007/3-540-48686-0_1
Krapivsky, P.L., Redner, S.: Organization of growing random networks. Phys. Rev. E 63, 066123 (May 2001). https://doi.org/10.1103/PhysRevE.63.066123
Krapivsky, P.L., Redner, S., Leyvraz, F.: Connectivity of Growing Random Networks. Phys. Rev. Lett. 85, 4629–4632 (Nov 2000). https://doi.org/10.1103/PhysRevLett.85.4629
Lánský, P., Radil-Weiss, T.: A generalization of the Yule-Simon model, with special reference to word association tests and neural cell assembly formation. J. Math. Psychol. 21(1), 53–65 (1980). https://doi.org/10.1016/0022-2496(80)90027-9
Lansky, P., Polito, F., Sacerdote, L.: The role of detachment of in-links in scale-free networks. J. Phys. A, Math. Theor. 47(34), 345002 (2014). https://doi.org/10.1088/1751-8113/47/34/345002
Lansky, P., Polito, F., Sacerdote, L.: Generalized nonlinear Yule models. J. Stat. Phys. 165(3), 661–679 (2016). MR3562427. https://doi.org/10.1007/s10955-016-1630-9
Laskin, N.: Fractional Poisson process. Commun. Nonlinear Sci. Numer. Simul. 8(3–4), 201–213 (2003). Chaotic transport and complexity in classical and quantum dynamics. MR2007003. https://doi.org/10.1016/S1007-5704(03)00037-6
Mainardi, F., Gorenflo, R., Scalas, E.: A fractional generalization of the Poisson processes. Vietnam J. Math. 32(Special Issue), 53–64 (2004). MR2120631
Meerschaert, M.M., Nane, E., Vellaisamy, P.: The fractional Poisson process and the inverse stable subordinator. Electron. J. Probab. 16(59), 1600–1620 (2011). MR2835248. https://doi.org/10.1214/EJP.v16-920
Nawrotzki, K.: Ein Grenzwertsatz für homogene zufällige Punktfolgen (Verallgemeinerung eines Satzes von A. Rényi. Math. Nachr. 24, 201–217 (1962). MR0154323. https://doi.org/10.1002/mana.19620240305
Orsingher, E., Polito, F.: Fractional pure birth processes. Bernoulli 16(3), 858–881 (2010). MR2730651. https://doi.org/10.3150/09-BEJ235
Ostroumova, L., Ryabchenko, A., Samosvat, E.: Generalized preferential attachment: tunable power-law degree distribution and clustering coefficient. In: Algorithms and models for the web graph. Lecture Notes in Comput. Sci., vol. 8305, pp. 185–202. Springer (2013). MR3163720. https://doi.org/10.1007/978-3-319-03536-9_15
Pachon, A., Polito, F., Sacerdote, L.: Random Graphs Associated to Some Discrete and Continuous Time Preferential Attachment Models. J. Stat. Phys. 162(6), 1608–1638 (2016). MR3463790. https://doi.org/10.1007/s10955-016-1462-7
Pachon, A., Polito, F., Sacerdote, L.: On the continuous-time limit of the Barabási-Albert random graph. arXiv preprint arXiv:1607.04183 (2016)
Pachon, A., Sacerdote, L., Yang, S.: Scale-free behavior of networks with the copresence of preferential and uniform attachment rules. arXiv preprint arXiv:1704.08597 (2017). MR3776186. https://doi.org/10.1016/j.physd.2018.01.005
Prabhakar, T.R.: A singular integral equation with a generalized Mittag–Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971). MR0293349
Puri, P.S.: On the characterization of point processes with the order statistic property without the moment condition. J. Appl. Probab. 19(1), 39–51 (1982). MR0644418. https://doi.org/10.2307/3213914
Repin, O.N., Saichev, A.I.: Fractional Poisson law. Radiophys. Quantum Electron. 43(9), 738–741 (2001). 2000. MR1910034. https://doi.org/10.1023/A:1004890226863
Saichev, A.I., Zaslavsky, G.M.: Fractional kinetic equations: solutions and applications. Chaos 7(4), 753–764 (1997). MR1604710. https://doi.org/10.1063/1.166272
Simon, H.A.: On a class of skew distribution functions. Biometrika 42(3–4), 425–440 (1955). MR0073085. https://doi.org/10.1093/biomet/42.3-4.425
Simon, H.A.: Some further notes on a class of skew distribution functions. Inf. Control 3, 80–88 (1960). MR0130733. https://doi.org/10.1016/S0019-9958(60)90302-8
van der Hofstad, R.: Random Graphs and Complex Networks, vol. 1. Cambridge University Press, Cambridge (2016). ISBN 9781316779422. MR3617364. https://doi.org/10.1017/9781316779422
Yule, G.U.: A Mathematical Theory of Evolution, Based on the Conclusions of Dr J. C. Willis, F. R. S.. Philos. Trans. R. Soc. Lond. B 213, 21–87 (1925). https://doi.org/10.1098/rstb.1925.0002