Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 6, Issue 3 (2019)
  4. On estimation of expectation of simultan ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

On estimation of expectation of simultaneous renewal time of time-inhomogeneous Markov chains using dominating sequence
Volume 6, Issue 3 (2019), pp. 333–343
Vitaliy Golomoziy  

Authors

 
Placeholder
https://doi.org/10.15559/19-VMSTA138
Pub. online: 14 October 2019      Type: Research Article      Open accessOpen Access

Received
16 March 2019
Revised
14 August 2019
Accepted
14 August 2019
Published
14 October 2019

Abstract

The main subject of the study in this paper is the simultaneous renewal time for two time-inhomogeneous Markov chains which start with arbitrary initial distributions. By a simultaneous renewal we mean the first time of joint hitting the specific set C by both processes. Under the condition of existence a dominating sequence for both renewal sequences generated by the chains and non-lattice condition for renewal probabilities an upper bound for the expectation of the simultaneous renewal time is obtained.

References

[1] 
Andrieu, C., Fort, G., Vihola, M.: Quantitative convergence rates for sugeometric Markov chains. Ann. Appl. Probab. 52, 391–404 (2015) MR3372082. https://doi.org/10.1239/jap/1437658605
[2] 
Baxendale, P.: Renewal theory and computable convergence rates for geometrically ergodic Markov chains. Ann. Appl. Probab. 15, 700–738 (2005) MR2114987. https://doi.org/10.1214/105051604000000710
[3] 
Daley, D.: Tight bounds for the renewal function of a random walk. Ann. Probab. 8, 615–621 (1980) MR0573298
[4] 
Douc, R., Moulines, E., Soulier, P.: Practical drift conditions for subgeometric rates of convergence. Ann. Appl. Probab. 14, 1353–1377 (2004) MR2071426. https://doi.org/10.1214/105051604000000323
[5] 
Douc, R., Moulines, E., Soulier, P.: Quantitative bounds on convergence of time-inhomogeneous Markov chains. Ann. Appl. Probab. 14, 1643–1665 (2004) MR2099647. https://doi.org/10.1214/105051604000000620
[6] 
Feller, W.: An Introduction to Probability Theory and Its Applications, Vol. 1. John Wiley and Sons (1957) MR0088081
[7] 
Fort, G., Roberts, G.O.: Subgeometric ergodicity of strong Markov processes. Ann. Appl. Probab. 15, 1565–1589 (2005) MR2134115. https://doi.org/10.1214/105051605000000115
[8] 
Gismondi, F., Janssen, J., R., M.: Non-homogeneous time convolutions, renewal processes and age-dependent mean number of notorcar accidents. Ann. Actuar. Sci. 9, 36–57 (2015)
[9] 
Golomoziy, V.: A subgeometric estimate of the stability for time-homogeneous Markov chains. Theory Probab. Math. Stat. 81, 35–50 (2010) MR2667308. https://doi.org/10.1090/S0094-9000-2010-00808-8
[10] 
Golomoziy, V.: An estimate of the stability for nonhomogeneous Markov chains under classical minorization condition. Theory Probab. Math. Stat. 88, 35–49 (2014) MR3112633. https://doi.org/10.1090/S0094-9000-2014-00917-5
[11] 
Golomoziy, V.: An inequality for the coupling moment in the case of two inhomogeneous Markov chains. Theory Probab. Math. Stat. 90, 43–56 (2015) MR3241859. https://doi.org/10.1090/tpms/948
[12] 
Golomoziy, V.: An estimate for an expectation of the simultaneous renewal for time-inhomogeneous Markov chains. Mod. Stoch. Theory Appl. 315–323 (2016) MR3593115. https://doi.org/10.15559/16-VMSTA68
[13] 
Golomoziy, V.: An estimate of the expectation of the excess of a renewal sequence generated by a time-inhomogeneous Markov chain if a square-integrable majorizing squence exists. Theory Probab. Math. Stat. 94, 53–62 (2017) MR3553453. https://doi.org/10.1090/tpms/1008
[14] 
Golomoziy, V., Kartashov, M.: On the integrability of the coupling moment for time-inhomogeneous Markov chains. Theory Probab. Math. Stat. 89, 1–12 (2014) MR3235170. https://doi.org/10.1090/S0094-9000-2015-00930-3
[15] 
Golomoziy, V., Kartashov, M.: Maximal coupling and stability of discrete non-homogeneous Markov chains. Theory Probab. Math. Stat. 91, 17–27 (2015) MR2986452. https://doi.org/10.1090/S0094-9000-2013-00891-6
[16] 
Golomoziy, V., Kartashov, M.: Maxmimal coupling and v-stability of discrete nonhomogeneous Markov chains. Theory Probab. Math. Stat. 93, 19–31 (2016) MR3553437. https://doi.org/10.1090/tpms/992
[17] 
Golomoziy, V., Kartashov, M., Kartashov, Y.: Impact of the stress factor on the price of widow’s pensions. proofs. Theory Probab. Math. Stat. 92, 17–22 (2016) MR3330687
[18] 
Kartashov, M., Golomoziy, V.: Average coupling time for independent discrete renewal processes. Theory Probab. Math. Stat. 84, 77–83 (2011) MR2857418. https://doi.org/10.1090/S0094-9000-2012-00855-7
[19] 
Kartashov, M., Golomoziy, V.: Maximal coupling procedure and stability of discrete Markov chains. i. Theory Probab. Math. Stat. 86, 93–104 (2013) MR3241447. https://doi.org/10.1090/S0094-9000-2014-00905-9
[20] 
Kartashov, M., Golomoziy, V.: Maximal coupling procedure and stability of discrete Markov chains. ii. Theory Probab. Math. Stat. 87, 65–78 (2013) MR3241447. https://doi.org/10.1090/S0094-9000-2014-00905-9
[21] 
Kluppelberg, C., S., P.: Renewal theory for functionals of a Markov chain with compact state space. Ann. Probab. 3, 2270–2300 (2003) MR2016619. https://doi.org/10.1214/aop/1068646385
[22] 
Lindvall, T.: Lectures on Coupling Method. John Wiley and Sons (1991) MR1180522
[23] 
Melfi, V.: Nonlinear Markov renewal theory with statistical applications. Ann. Probab. 20, 753–771 (1992) MR1159572
[24] 
Thorisson, H.: Coupling, Stationarity, and Regeneration. Springer, New York (2000) MR1741181. https://doi.org/10.1007/978-1-4612-1236-2

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2019 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Coupling renewal theory Markov chain random walk

MSC2010
60J10 60K05

Metrics
since March 2018
476

Article info
views

474

Full article
views

360

PDF
downloads

176

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy