Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 7, Issue 2 (2020)
  4. Prediction in polynomial errors-in-varia ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Prediction in polynomial errors-in-variables models
Volume 7, Issue 2 (2020), pp. 203–219
Alexander Kukush   Ivan Senko  

Authors

 
Placeholder
https://doi.org/10.15559/20-VMSTA154
Pub. online: 25 May 2020      Type: Research Article      Open accessOpen Access

Received
24 April 2020
Revised
4 May 2020
Accepted
6 May 2020
Published
25 May 2020

Abstract

A multivariate errors-in-variables (EIV) model with an intercept term, and a polynomial EIV model are considered. Focus is made on a structural homoskedastic case, where vectors of covariates are i.i.d. and measurement errors are i.i.d. as well. The covariates contaminated with errors are normally distributed and the corresponding classical errors are also assumed normal. In both models, it is shown that (inconsistent) ordinary least squares estimators of regression parameters yield an a.s. approximation to the best prediction of response given the values of observable covariates. Thus, not only in the linear EIV, but in the polynomial EIV models as well, consistent estimators of regression parameters are useless in the prediction problem, provided the size and covariance structure of observation errors for the predicted subject do not differ from those in the data used for the model fitting.

References

[1] 
Anderson, T.W.: An Introduction to Multivariate Statistical Analysis. Wiley Publications in Statistics. John Wiley & Sons, Inc. and Chapman & Hall, Ltd. (1958). MR0091588
[2] 
Carroll, R.S., Ruppert, D., Stefanski, L.A., Crainiceanes, C.M.: Measurement Error in Nonlinear Models: A Modern Perspective, Second Edition. Monogr. Stat. Appl. Probab., vol. 105. Chapman and Hall/CRC (2006). MR2243417. https://doi.org/10.1201/9781420010138
[3] 
Cheng, C.-L., Schneeweiss, H.: Polynomial regression with errors in the variables. J. R. Stat. Soc. 60(1), 189–199 (1998). MR1625632. https://doi.org/10.1111/1467-9868.00118
[4] 
Cheng, C.-L., Van Ness, J.W.: Statistical Regression with Measurement Error. Kendall’s Library of Statistics 6. Arnold (1999). MR1719513. https://doi.org/10.1002/1097-0258(2000815)19:15
[5] 
Gujarati, D.N., Porter, D.C., Gunaseker, S.: Basic Econometrics, 5th Edn. MCGraw-Hill (2017)
[6] 
Kukush, O.G., Tsaregorodtsev, Y.V.: Convergence of estimators in a polynomial functional model with measurement errors. Theory Probab. Math. Stat. 92, 79–88 (2016). MR3553428. https://doi.org/10.1090/tpms/984
[7] 
Mynbaev, K., Martins-Filho, C.: Consistency and asymptotic normality for a nonparametric prediction under measurement errors. J. Multivar. Anal. 139, 166–188 (2015). MR3349485. https://doi.org/10.1016/j.jmva.2015.03.003
[8] 
Seber, G.A.F., Lee, A.S.: Linear Regression Analysis, 2nd Edn. Wiley Series in Probability and Statistics. John Wiley & Sons (2003). MR1958247. https://doi.org/10.1002/9780471722199
[9] 
Shklyar, S.: Consistency of the total least squares estimator in the linear errors-in-variables regression. Mod. Stoch. Theory Appl. 5(3), 247–295 (2018). MR3868542. https://doi.org/10.15559/18-vmsta104
[10] 
Söderström, T.: Errors-in-Variables Methods in System Identification. Communications and Control Engineering Series. Springer (2018). MR3791479. https://doi.org/10.1007/978-3-319-75001-9
[11] 
Van Huffel, S., Vandewalle, J.: The Total Least Squares Problem. Frontiers Appl. Math., vol. 9. MR1118607. https://doi.org/10.1137/1.9781611971002
[12] 
Wansbeek, T., Meijer, E.: Measurement Error and Latent Variables in Econometrics. Advanced Textbooks in Economics. North Holland Publishing Co. (2000). MR1804397. https://doi.org/10.1002/9780470996249

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2020 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Prediction multivariate errors-in-variables model polynomial errors-in-variables model ordinary least squares consistent estimator of best prediction confidence interval

MSC2010
62J05 62J02 62H12

Metrics
since March 2018
614

Article info
views

525

Full article
views

390

PDF
downloads

148

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy