Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 8, Issue 3 (2021)
  4. Convexity and robustness of the Rényi en ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Cited by
  • More
    Article info Full article Cited by

Convexity and robustness of the Rényi entropy
Volume 8, Issue 3 (2021), pp. 387–412
Filipp Buryak ORCID icon link to view author Filipp Buryak details   Yuliya Mishura ORCID icon link to view author Yuliya Mishura details  

Authors

 
Placeholder
https://doi.org/10.15559/21-VMSTA185
Pub. online: 26 July 2021      Type: Research Article      Open accessOpen Access

Received
27 May 2021
Revised
23 June 2021
Accepted
24 June 2021
Published
26 July 2021

Abstract

We study convexity properties of the Rényi entropy as function of $\alpha >0$ on finite alphabets. We also describe robustness of the Rényi entropy on finite alphabets, and it turns out that the rate of respective convergence depends on initial alphabet. We establish convergence of the disturbed entropy when the initial distribution is uniform but the number of events increases to ∞ and prove that the limit of Rényi entropy of the binomial distribution is equal to Rényi entropy of the Poisson distribution.

References

[1] 
Acharya, J., Orlitsky, A., Suresh, A.T., Tyagi, H.: The Complexity of Estimating Rényi Entropy. Proceedings of the 2015 Annual ACM-SIAM Symposium on Discrete Algorithms (2015). Book Code:PRDA15. MR3451148. https://doi.org/10.1137/1.9781611973730.124
[2] 
Banna, O., Buryak, F., Yu, M.: Distance from fractional Brownian motion with associated Hurst index $0<H<1/2$ to the subspaces of Gaussian martingales involving power integrands with an arbitrary positive exponent. Mod. Stoch. Theory Appl. 7, pp. 191–202 (2020). MR4120614. https://doi.org/10.15559/20-vmsta156
[3] 
Banna, O., Mishura, Yu., Ralchenko, K., Shklyar, S.: Fractional Brownian Motion. Approximations and Projections. Wiley-ISTE, London (2019). 288 p.
[4] 
Bégin, L., Germain, P., Laviolette, F., Roy, J.-F.: PAC-Bayesian Bounds based on the Rényi Divergence. In: Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, vol. 51, pp. 435–444. PMLR (2016).
[5] 
Bobkov, S.G., Marsiglietti, A., Melbourne, J.: Concentration functions and entropy bounds for discrete log-concave distributions. arXiv:2007.11030v1 [math.PR]
[6] 
Erven, T., Harremoës, P.: Rényi Divergence and majorization. In: IEEE Transactions on Information Theory (ISIT), INSPEC 11434178 (2010).
[7] 
Erven, T., Harremoës, P.: Rényi Divergence and Kullback-Leibler Divergence. IEEE Trans. Inf. Theory 60, 3797–3820 (2014). MR3225930. https://doi.org/10.1109/TIT.2014.2320500
[8] 
Gil, M., Alajaji, F., Linder, T.: Rényi divergence measures for commonly used univariate continuous distributions. Inf. Sci. 249, 124–131 (2013). MR3105467. https://doi.org/10.1016/j.ins.2013.06.018
[9] 
Hanel, R., Thurner, S., Tsallis, C.: On the robustness of q-expectation values and Rényi entropy. Europhys. Lett. Assoc. 852 (2009).
[10] 
Harremoës, P.: Binomial and Poisson Distributions as Maximum Entropy Distributions. IEEE Trans. Inf. Theory 475, 2039–2041 (2001). MR1842536. https://doi.org/10.1109/18.930936
[11] 
Harremoës, P.: Interpretations of Rényi entropies and divergences. Physica A (2006). MR2223335. https://doi.org/10.1016/j.physa.2006.01.012
[12] 
Ho, S.-W., Verdú, S.: Convexity/concavity of Rényi entropy and α-mutual information. In: IEEE International Symposium on Information Theory (ISIT), pp. 745–749 (2015). https://doi.org/10.1109/ISIT.2015.7282554
[13] 
Lenzi, E.K., Mendes, R.S., Silva, L.R.: Statistical mechanics based on Rényi entropy. Physica A 280, 337–345 (2000). MR1758523. https://doi.org/10.1016/S0378-4371(00)00007-8
[14] 
Rényi, A.: On Measures of Entropy and Information. In: Proceedings of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, vol. 1, pp. 547–561. The Regents of University of the California, Berkeley, CA, USA (1961). MR0132570
[15] 
Sason, I.: Tight Bounds on the Rényi Entropy via Majorization with Applications to Guessing and Compression. Entropy 20(12), 896 (2018).
[16] 
Yang, Y., Li, J., Yang, Y.: Multiscale multifractal multiproperty analysis of financial time series based on Rényi entropy. Int. J. Mod. Phys. C 28(2) (2017). MR3284253. https://doi.org/10.1016/j.physa.2014.11.009

Full article Cited by PDF XML
Full article Cited by PDF XML

Copyright
© 2021 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Discrete distribution Rényi entropy convexity

MSC2010
60E05 94A17

Metrics
since March 2018
1562

Article info
views

498

Full article
views

495

PDF
downloads

124

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy