Exit times for some nonlinear autoregressive processes
Pub. online: 25 March 2025
Type: Research Article
Open Access
Received
29 August 2024
29 August 2024
Revised
10 January 2025
10 January 2025
Accepted
9 March 2025
9 March 2025
Published
25 March 2025
25 March 2025
Abstract
The expected exit time from the interval $[-1,1]$ is investigated for an autoregressive process defined recursively by
\[ {X_{n+1}^{\varepsilon }}=f\big({X_{n}^{\varepsilon }}\big)+\varepsilon {\xi _{n+1}},\hspace{1em}n=0,1,2,\dots ,\hspace{2.5pt}{X_{0}}=0.\]
Here, ε is a small positive parameter, $f:\mathbb{R}\mapsto \mathbb{R}$ is usually a contractive function and ${\{{\xi _{n}}\}_{n\ge 1}}$ is a sequence of i.i.d. random variables. In this paper, previous results for a linear function $f(x)=ax$ are extended to more general cases, with the main focus on piecewise linear functions.References
Anděl, J., Netuka, I., Zvára, K.: On threshold autoregressive processes. Kybernetika 20(2), 89–106 (1984). MR0747062
Basak, G.K., Ho, K.-W.R.: Level-crossing probabilities and first-passage times for linear processes. Adv. Appl. Probab. 36, 643–666 (2004). MR2058153. https://doi.org/10.1239/aap/1086957589
Baumgarten, C.: Survival probabilities of autoregressive processes. ESAIM Probab. Stat. 18, 145–170 (2014). MR3143737. https://doi.org/10.1051/ps/2013031
Di Nardo, E.: On the first passage time for autoregressive processes. Sci. Math. Jpn. 21, 61–76 (2008). MR2399804
Hamza, K., Jagers, P., Klebaner, F.C.: On the establishment, persistence and inevitable extinction of populations. J. Math. Biol. 72, 797–820 (2016). MR3459167. https://doi.org/10.1007/s00285-015-0903-2
Högnäs, G.: On the lifetime of a size-dependent branching process. Stoch. Models 35, 119–131 (2019). MR3969510. https://doi.org/10.1080/15326349.2019.1578241
Högnäs, G., Jung, B.: Analysis of a stochastic difference equation: Exit times and invariant distributions. Fasc. Math. 44, 69–74 (2010). MR2722632
Högnäs, G., Jung, B.: Exit times for some autoregressive processes with non-Gaussian noise distributions. Contemp. Math. 668, 111–117 (2016). MR3536695. https://doi.org/10.1090/conm/668/13399
Högnäs, G.: On the quasi-stationary distribution of a stochastic Ricker model. Stoch. Process. Appl. 70, 243–263 (1997). MR1475665. https://doi.org/10.1016/S0304-4149(97)00064-1
Högnäs, G., Jung, B.: Exit times for some nonlinear autoregressive processes (2019). arXiv:1912.08514.
Jung, B.: Exit times for multivariate autoregressive processes. Stoch. Process. Appl. 123, 3052–3063 (2013). MR3062436. https://doi.org/10.1016/j.spa.2013.03.003
Klebaner, F., Liptser, R.: Large deviations for past-dependent recursions. Probl. Inf. Transm. 32, 23–34 (1996). MR1441520
Klebaner, F., Liptser, R.: Large deviations for past-dependent recursions (2006). arXiv:math/0603407.
Klebaner, F.C., Liptser, R.: Moderate deviations for randomly perturbed dynamical systems. Stoch. Process. Appl. 80(2), 157–176 (1999). MR1682255. https://doi.org/10.1016/S0304-4149(98)00075-1
Koski, T., Jung, B., Högnäs, G.: Exit times for ARMA processes. Adv. Appl. Probab. 50(A), 191–195 (2018). MR3905100. https://doi.org/10.1017/apr.2018.79
Novikov, A.A.: On the first passage time of an autoregressive process over a level and an application to a “disorder” problem. Theory Probab. Appl. 35(2), 269–279 (1991). https://doi.org/10.1137/1135035
Novikov, A., Kordzakhia, N.: Martingales and first passage times of AR(1) sequences. Stochastics 80(2-3), 197–210 (2008). MR2402164. https://doi.org/10.1080/17442500701840885
Varadhan, S.R.S.: Large Deviations and Applications. Society for Industrial and Applied Mathematics (1984). https://epubs.siam.org/doi/abs/10.1137/1.9781611970241. MR0758258. https://doi.org/10.1137/1.9781611970241.bm