Weighted entropy: basic inequalities
Volume 4, Issue 3 (2017), pp. 233–252
Pub. online: 2 October 2017
Type: Research Article
Open Access
Received
30 August 2017
30 August 2017
Revised
18 September 2017
18 September 2017
Accepted
18 September 2017
18 September 2017
Published
2 October 2017
2 October 2017
Abstract
This paper represents an extended version of an earlier note [10]. The concept of weighted entropy takes into account values of different outcomes, i.e., makes entropy context-dependent, through the weight function. We analyse analogs of the Fisher information inequality and entropy power inequality for the weighted entropy and discuss connections with weighted Lieb’s splitting inequality. The concepts of rates of the weighted entropy and information are also discussed.
References
Cover, T., Thomas, J.: Elements of Information Theory. John Wiley, New York (2006). MR2239987
Dembo, A.: Simple proof of the concavity of the entropy power with respect to added Gaussian noise. IEEE Trans. Inf. Theory 35(4), 887–888 (1989). MR1013698. doi:10.1109/18.32166
Dembo, A., Cover, T., Thomas, J.: Information theoretic inequalities. IEEE Trans. Inf. Theory 37, 1501–1518 (1991). MR1134291. doi:10.1109/18.104312
Frizelle, G., Suhov, Y.: An entropic measurement of queueing behaviour in a class of manufacturing operations. Proc. R. Soc. Lond., Ser A 457, 1579–1601 (2001). doi:10.1098/rspa.2000.0731
Frizelle, G., Suhov, Y.: The measurement of complexity in production and other commercial systems. Proc. R. Soc. Lond., Ser A 464, 2649–2668 (2008). doi:10.1098/rspa.2007.0275
Guiasu, S.: Weighted entropy. Rep. Math. Phys. 2, 165–179 (1971). MR0289206. doi:10.1016/0034-4877(71)90002-4
Kelbert, M., Suhov, Y.: Information Theory and Coding by Example. Cambridge University Press, Cambridge (2013). MR3137525. doi:10.1017/CBO9781139028448
Kelbert, M., Suhov, Y.: Continuity of mutual entropy in the limiting signal-to-noise ratio regimes. In: Stochastic Analysis, pp. 281–299. Springer, Berlin (2010). MR2789089. doi:10.1007/978-3-642-15358-7_14
Khan, J.F., Bhuiyan, S.M.: Weighted entropy for segmentation evaluation. Opt. Laser Technol. 57, 236–242 (2014). doi:10.1016/j.optlastec.2013.07.012
Lai, W.K., Khan, I.M., Poh, G.S.: Weighted entropy-based measure for image segmentation. Proc. Eng. 41, 1261–1267 (2012). doi:10.1016/j.proeng.2012.07.309
Lieb, E.: Proof of entropy conjecture of Wehrl. Commun. Math. Phys. 62, 35–41 (1978). MR0506364. doi:10.1007/BF01940328
Nawrockia, D.N., Harding, W.H.: State-value weighted entropy as a measure of investment risk. Appl. Econ. 18, 411–419 (1986). doi:10.1080/00036848600000038
Rioul, O.: Information theoretic proofs of entropy power inequality. IEEE Trans. Inf. Theory 57(1), 33–55 (2011). MR2810269. doi:10.1109/TIT.2010.2090193
Shockley, K.R.: Using weighted entropy to rank chemicals in quantitative high throughput screening experiments. J. Biomol. Screen. 19, 344–353 (2014). doi:10.1177/1087057113505325
Suhov, Y.: Stuhl I. Weighted information and entropy rates (2016). arXiv:1612.09169v1
Suhov, Y., Sekeh, S.: An extension of the Ky-Fan inequality. arXiv:1504.01166
Suhov, Y., Stuhl, I., Sekeh, S., Kelbert, M.: Basic inequalities for weighted entropy. Aequ. Math. 90(4), 817–848 (2016). MR3523101. doi:10.1007/s00010-015-0396-5
Suhov, Y., Sekeh, S., Kelbert, M.: Entropy-power inequality for weighted entropy. arXiv:1502.02188
Suhov, Y., Yasaei Sekeh, S.: Stuhl I. Weighted Gaussian entropy and determinant inequalities. arXiv:1505.01753v1
Tsui, P.-H.: Ultrasound detection of scatterer concentration by weighted entropy. Entropy 17, 6598–6616 (2015). doi:10.3390/e17106598
Verdú, S., Guo, D.: A simple proof of the entropy-power inequality. IEEE Trans. Inf. Theory 52(5), 2165–2166 (2006). MR2234471. doi:10.1109/TIT.2006.872978
Villani, C.: A short proof of the “concavity of entropy power”. IEEE Trans. Inf. Theory 46, 1695–1696 (2000). MR1768665. doi:10.1109/18.850718
Yang, L., Yang, J., Peng, N., Ling, J.: Weighted information entropy: A method for estimating the complex degree of infrared images’ backgrounds. In: Kamel, M., Campilho, A. (eds.) Image Analysis and Recognition, vol. 3656, Springer, Berlin/Heidelberg, pp. 215–22 (2005). MR3157460. doi:10.1007/978-3-642-39094-4
Zamir, R.: A proof of the Fisher information inequality via a data processing argument. IEEE Trans. Inf. Theory 44(3), 1246–1250 (1998). MR1616672. doi:10.1109/18.669301