We prove that a square-integrable set-indexed stochastic process is a set-indexed Brownian motion if and only if its projection on all the strictly increasing continuous sequences are one-parameter G-time-changed Brownian motions. In addition, we study the “sequence-independent variation” property for group stationary-increment stochastic processes in general and for a set-indexed Brownian motion in particular. We present some applications.
We obtain a Lundberg-type inequality in the case of an inhomogeneous renewal risk model. We consider the model with independent, but not necessarily identically distributed, claim sizes and the interoccurrence times. In order to prove the main theorem, we first formulate and prove an auxiliary lemma on large values of a sum of random variables asymptotically drifted in the negative direction.
In this paper, we provide strong $L_{2}$-rates of approximation of the integral-type functionals of Markov processes by integral sums. We improve the method developed in [2]. Under assumptions on the process formulated only in terms of its transition probability density, we get the accuracy that coincides with that obtained in [3] for a one-dimensional diffusion process.
where ${B}^{H_{1}}$ and ${B}^{H_{2}}$ are two independent fractional Brownian motions with Hurst indices $H_{1}$ and $H_{2}$ satisfying the condition $\frac{1}{2}\le H_{1}<H_{2}<1$. Actually, we reduce the problem to the solution of the integral Fredholm equation of the 2nd kind with a specific weakly singular kernel depending on two power exponents. It is proved that the kernel can be presented as the product of a bounded continuous multiplier and weak singular one, and this representation allows us to prove the compactness of the corresponding integral operator. This, in turn, allows us to establish an existence–uniqueness result for the sequence of the equations on the increasing intervals, to construct accordingly a sequence of statistical estimators, and to establish asymptotic consistency.
We consider the Berkson model of logistic regression with Gaussian and homoscedastic error in regressor. The measurement error variance can be either known or unknown. We deal with both functional and structural cases. Sufficient conditions for identifiability of regression coefficients are presented.
Conditions for identifiability of the model are studied. In the case where the error variance is known, the regression parameters are identifiable if the distribution of the observed regressor is not concentrated at a single point. In the case where the error variance is not known, the regression parameters are identifiable if the distribution of the observed regressor is not concentrated at three (or less) points.
The key analytic tools are relations between the smoothed logistic distribution function and its derivatives.
where A is a continuous additive functional of X associated with some signed measure. Under the assumption that X admits a transition probability density that possesses upper and lower bounds of certain type, we show that the kernel corresponding to ${T_{t}^{A}}$ possesses the density ${p_{t}^{A}}(x,y)$ with respect to the Lebesgue measure and construct upper and lower bounds for ${p_{t}^{A}}(x,y)$. Some examples are provided.
The present work constitutes the second part of a two-paper project that, in particular, deals with an in-depth study of effective techniques used in econometrics in order to make accurate forecasts in the concrete framework of one of the major economies of the most productive Italian area, namely the province of Verona. It is worth mentioning that this region is indubitably recognized as the core of the commercial engine of the whole Italian country. This is why our analysis has a concrete impact; it is based on real data, and this is also the reason why particular attention has been taken in treating the relevant economical data and in choosing the right methods to manage them to obtain good forecasts. In particular, we develop an approach mainly based on vector autoregression where lagged values of two or more variables are considered, Granger causality, and the stochastic trend approach useful to work with the cointegration phenomenon.
We study asymptotic normality of the randomized periodogram estimator of quadratic variation in the mixed Brownian–fractional Brownian model. In the semimartingale case, that is, where the Hurst parameter H of the fractional part satisfies $H\in (3/4,1)$, the central limit theorem holds. In the nonsemimartingale case, that is, where $H\in (1/2,3/4]$, the convergence toward the normal distribution with a nonzero mean still holds if $H=3/4$, whereas for the other values, that is, $H\in (1/2,3/4)$, the central convergence does not take place. We also provide Berry–Esseen estimates for the estimator.
We establish the rate of convergence of distributions of sums of independent identically distributed random variables to the Gaussian distribution in terms of truncated pseudomoments by implementing the idea of Yu. Studnyev for getting estimates of the rate of convergence of the order higher than ${n}^{-1/2}$.
This work is the first part of a project dealing with an in-depth study of effective techniques used in econometrics in order to make accurate forecasts in the concrete framework of one of the major economies of the most productive Italian area, namely the province of Verona. In particular, we develop an approach mainly based on vector autoregressions, where lagged values of two or more variables are considered, Granger causality, and the stochastic trend approach useful to work with the cointegration phenomenon. Latter techniques constitute the core of the present paper, whereas in the second part of the project, we present how these approaches can be applied to economic data at our disposal in order to obtain concrete analysis of import–export behavior for the considered productive area of Verona.