Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 2, Issue 2 (2015)
  4. A group action on increasing sequences o ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

A group action on increasing sequences of set-indexed Brownian motions
Volume 2, Issue 2 (2015), pp. 185–198
Arthur Yosef  

Authors

 
Placeholder
https://doi.org/10.15559/15-VMSTA31
Pub. online: 6 August 2015      Type: Research Article      Open accessOpen Access

Received
23 February 2015
Revised
29 July 2015
Accepted
30 July 2015
Published
6 August 2015

Abstract

We prove that a square-integrable set-indexed stochastic process is a set-indexed Brownian motion if and only if its projection on all the strictly increasing continuous sequences are one-parameter G-time-changed Brownian motions. In addition, we study the “sequence-independent variation” property for group stationary-increment stochastic processes in general and for a set-indexed Brownian motion in particular. We present some applications.

References

[1] 
Borodin, A.B., Salminen, P.: Handbook of Brownian motion – Facts and Formulae. Probability and Its Applications. Birkhäuser Verlag (1996)
[2] 
Cairoli, R., Walsh, J.B.: Stochastic integrals in the plane. Acta Math. 134, 111–183 (1975). doi:10.1007/BF02392100
[3] 
Durrett, R.: In: Brownian Motion and Martingales in Analysis. The Wadsworth Mathematics Series. Wadsworth, Belmont, California (1971)
[4] 
Freedman, D.: Brownian Motion and Diffusion. Springer, New York, Heidelberg, Berlin (1971)
[5] 
Herbin, E., Merzbach, E.: A characterization of the set-indexed Brownian motion by increasing paths. C. R. Acad. Sci. Paris, Sec. 1 343, 767–772 (2006). doi:10.1016/j.crma.2006.11.009
[6] 
Ivanoff, G., Merzbach, E.: Set-Indexed Martingales. Monographs on Statistics and Applied Probability, Chapman and Hall/CRC (1999)
[7] 
Khoshnevisan, D.: Multiparameter Processes: An Introduction to Random Fields. Springer (2002)
[8] 
Merzbach, E., Nualart, D.: Different kinds of two parameter martingales. Isr. J. Math. 52(3), 193–207 (1985). doi:10.1007/BF02786515
[9] 
Merzbach, E., Yosef, A.: Set-indexed Brownian motion on increasing paths. J. Theor. Probab. 22, 883–890 (2009). doi:10.1007/s10959-008-0188-0
[10] 
Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, New York, Heidelberg, Berlin (1991)
[11] 
Zakai, M.: Some classes of two-parameter martingales. Ann. Probab. 9, 255–265 (1981). doi:10.1214/aop/1176994466

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2015 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Set indexed process Brownian motion increasing path

MSC2010
60G15 60G48 60G60

Metrics
since March 2018
450

Article info
views

349

Full article
views

325

PDF
downloads

180

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy