A multiplicative wavelet-based model for simulation of a random process
Volume 2, Issue 4 (2015), pp. 309–325
Pub. online: 24 September 2015
Type: Research Article
Open Access
Received
21 July 2015
21 July 2015
Revised
8 September 2015
8 September 2015
Accepted
11 September 2015
11 September 2015
Published
24 September 2015
24 September 2015
Abstract
We find a multiplicative wavelet-based representation for stochastic processes that can be represented as the exponent of a second-order centered random process. We propose a wavelet-based model for simulation of such a stochastic process and find its rates of convergence to the process in different functional spaces in terms of approximation with given accuracy and reliability. This approach allows us to simulate stochastic processes (including certain classes of processes with heavy tails) with given accuracy and reliability.
References
Buldygin, V.V., Kozachenko, Y.V.: Metric Characterization of Random Variables and Random Processes. Am. Math. Soc., Boca Raton (2000). MR1743716
Härdle, W., Kerkyacharian, G., Picard, D., Tsybakov, A.: Wavelets, Approximation and Statistical Applications. Springer, New York (1998). MR1618204. doi:10.1007/978-1-4612-2222-4
Kozachenko, Y., Kovalchuk, Y.: Boundary-value problems with random initial conditions and functional series from $\mathrm{Sub}_{\varphi }(\varOmega )$. I. Ukr. Math. J. 50, 572–585 (1998). MR1698149. doi:10.1007/BF02487389
Kozachenko, Y., Pogoriliak, O.: Simulation of Cox processes driven by random Gaussian field. Methodol. Comput. Appl. Probab. 13, 511–521 (2011). MR2822393. doi:10.1007/s11009-010-9169-8
Kozachenko, Y., Sottinen, T., Vasylyk, O.: Simulation of weakly self-similar stationary increment $\mathrm{Sub}_{\varphi }(\varOmega )$-processes: a series expansion approach. Methodol. Comput. Appl. Probab. 7, 379–400 (2005). MR2210587. doi:10.1007/s11009-005-4523-y
Kozachenko, Y., Rozora, I., Turchyn, Y.: Properties of some random series. Commun. Stat., Theory Methods 40, 3672–3683 (2011). MR2860766. doi:10.1080/03610926.2011.581188
Ogorodnikov, V.A., Prigarin, S.M.: Numerical Modelling of Random Processes and Fields: Algorithms and Applications. VSP, Utrecht (1996). MR1419502
Ripley, B.D.: Stochastic Simulation. John Wiley & Sons, New York (1987). MR0875224. doi:10.1002/9780470316726
Turchyn, I.: Simulation of a strictly sub-Gaussian random field. Stat. Probab. Lett. 92, 183–189 (2014). MR3230492. doi:10.1016/j.spl.2014.05.022
Turchyn, Y.: Simulation of sub-Gaussian processes using wavelets. Monte Carlo Methods Appl. 17, 215–231 (2011). MR2846496. doi:10.1515/MCMA.2011.010