that is, $Af(x)=\theta (\kappa -x){f^{\prime }}(x)+\frac{1}{2}{\sigma }^{2}x{f^{\prime\prime }}(x)$, $x\ge 0$ ($\theta ,\kappa ,\sigma >0$). Alfonsi [1] showed that the equation has a smooth solution with partial derivatives of polynomial growth, provided that the initial function f is smooth with derivatives of polynomial growth. His proof was mainly based on the analytical formula for the transition density of the CIR process in the form of a rather complicated function series. In this paper, for a CIR process satisfying the condition ${\sigma }^{2}\le 4\theta \kappa $, we present a direct proof based on the representation of a CIR process in terms of a squared Bessel process and its additivity property.
In this paper we define the fractional Cox–Ingersoll–Ross process as $X_{t}:={Y_{t}^{2}}\mathbf{1}_{\{t<\inf \{s>0:Y_{s}=0\}\}}$, where the process $Y=\{Y_{t},t\ge 0\}$ satisfies the SDE of the form $dY_{t}=\frac{1}{2}(\frac{k}{Y_{t}}-aY_{t})dt+\frac{\sigma }{2}d{B_{t}^{H}}$, $\{{B_{t}^{H}},t\ge 0\}$ is a fractional Brownian motion with an arbitrary Hurst parameter $H\in (0,1)$. We prove that $X_{t}$ satisfies the stochastic differential equation of the form $dX_{t}=(k-aX_{t})dt+\sigma \sqrt{X_{t}}\circ d{B_{t}^{H}}$, where the integral with respect to fractional Brownian motion is considered as the pathwise Stratonovich integral. We also show that for $k>0$, $H>1/2$ the process is strictly positive and never hits zero, so that actually $X_{t}={Y_{t}^{2}}$. Finally, we prove that in the case of $H<1/2$ the probability of not hitting zero on any fixed finite interval by the fractional Cox–Ingersoll–Ross process tends to 1 as $k\to \infty $.
We investigate the pricing of cliquet options in a geometric Meixner model. The considered option is of monthly sum cap style while the underlying stock price model is driven by a pure-jump Meixner–Lévy process yielding Meixner distributed log-returns. In this setting, we infer semi-analytic expressions for the cliquet option price by using the probability distribution function of the driving Meixner–Lévy process and by an application of Fourier transform techniques. In an introductory section, we compile various facts on the Meixner distribution and the related class of Meixner–Lévy processes. We also propose a customized measure change preserving the Meixner distribution of any Meixner process.
Limit behaviour of temporal and contemporaneous aggregations of independent copies of a stationary multitype Galton–Watson branching process with immigration is studied in the so-called iterated and simultaneous cases, respectively. In both cases, the limit process is a zero mean Brownian motion with the same covariance function under third order moment conditions on the branching and immigration distributions. We specialize our results for generalized integer-valued autoregressive processes and single-type Galton–Watson processes with immigration as well.
Cox proportional hazards model with measurement errors is considered. In Kukush and Chernova (2017), we elaborated a simultaneous estimator of the baseline hazard rate $\lambda (\cdot )$ and the regression parameter β, with the unbounded parameter set $\varTheta =\varTheta _{\lambda }\times \varTheta _{\beta }$, where $\varTheta _{\lambda }$ is a closed convex subset of $C[0,\tau ]$ and $\varTheta _{\beta }$ is a compact set in ${\mathbb{R}}^{m}$. The estimator is consistent and asymptotically normal. In the present paper, we construct confidence intervals for integral functionals of $\lambda (\cdot )$ and a confidence region for β under restrictions on the error distribution. In particular, we handle the following cases: (a) the measurement error is bounded, (b) it is a normally distributed random vector, and (c) it has independent components which are shifted Poisson random variables.
In clustering of high-dimensional data a variable selection is commonly applied to obtain an accurate grouping of the samples. For two-class problems this selection may be carried out by fitting a mixture distribution to each variable. We propose a hybrid method for estimating a parametric mixture of two symmetric densities. The estimator combines the method of moments with the minimum distance approach. An evaluation study including both extensive simulations and gene expression data from acute leukemia patients shows that the hybrid method outperforms a maximum-likelihood estimator in model-based clustering. The hybrid estimator is flexible and performs well also under imprecise model assumptions, suggesting that it is robust and suited for real problems.
We study the frequency process $f_{1}$ of the block of 1 for a Ξ-coalescent Π with dust. If Π stays infinite, $f_{1}$ is a jump-hold process which can be expressed as a sum of broken parts from a stick-breaking procedure with uncorrelated, but in general non-independent, stick lengths with common mean. For Dirac-Λ-coalescents with $\varLambda =\delta _{p}$, $p\in [\frac{1}{2},1)$, $f_{1}$ is not Markovian, whereas its jump chain is Markovian. For simple Λ-coalescents the distribution of $f_{1}$ at its first jump, the asymptotic frequency of the minimal clade of 1, is expressed via conditionally independent shifted geometric distributions.