Asymptotics for the sum of three state Markov dependent random variables
Volume 6, Issue 1 (2019), pp. 109–131
Pub. online: 19 November 2018
Type: Research Article
Open Access
Received
10 August 2018
10 August 2018
Revised
11 October 2018
11 October 2018
Accepted
27 October 2018
27 October 2018
Published
19 November 2018
19 November 2018
Abstract
The insurance model when the amount of claims depends on the state of the insured person (healthy, ill, or dead) and claims are connected in a Markov chain is investigated. The signed compound Poisson approximation is applied to the aggregate claims distribution after $n\in \mathbb{N}$ periods. The accuracy of order $O({n^{-1}})$ and $O({n^{-1/2}})$ is obtained for the local and uniform norms, respectively. In a particular case, the accuracy of estimates in total variation and non-uniform estimates are shown to be at least of order $O({n^{-1}})$. The characteristic function method is used. The results can be applied to estimate the probable loss of an insurer to optimize an insurance premium.
References
Barbour, A.D., Lindvall, T.: Translated Poisson approximation for Markov chains. J. Theor. Probab. 19(3), 609–630 (2006). MR2280512. https://doi.org/10.1007/s10959-006-0047-9
Čekanavičius, V.: Approximation methods in probability theory. Universitext, Springer (2016). MR3467748. https://doi.org/10.1007/978-3-319-34072-2
Čekanavičius, V., Roos, B.: Poisson type approximations for the Markov binomial distribution. Stoch. Process. Appl. 119, 190–207 (2009). MR2485024. https://doi.org/10.1016/j.spa.2008.01.008
Čekanavičius, V., Vellaisamy, P.: Compound Poisson and signed compound Poisson approximations to the Markov binomial law. Bernoulli 16(4), 1114–1136 (2010). MR2759171. https://doi.org/10.3150/09-BEJ246
De Pril, N., Dhaene, J.: Error bounds for compound Poisson approximations of the individual risk model. ASTIN Bull. 22(2), 135–148 (1992). https://doi.org/10.2143/AST.22.2.2005111
Erhardsson, T.: Compound Poisson approximation for Markov chains using Stein’s method. Ann. Probab. 27(1), 565–596 (1999). MR1681149. https://doi.org/10.1214/aop/1022677272
Gani, J.: On the probability generating function of the sum of Markov-Bernoulli random variables. J. Appl. Probab. (Special vol.) 19A, 321–326 (1982). MR0633201. https://doi.org/10.2307/3213571
Gerber, H.U.: Error bounds for the compound Poisson approximation. Insur. Math. Econ. 3, 191–194 (1984). MR0752200. https://doi.org/10.1016/0167-6687(84)90062-3
Hipp, C.: Approximation of aggregate claims distributions by compound Poisson distribution. Insur. Math. Econ. 4(4), 227–232 (1985). MR0810720. https://doi.org/10.1016/0167-6687(85)90032-0
Hirano, K., Aki, S.: On number of success runs of specified length in a two-state Markov chain. Stat. Sin. 3, 313–320 (1993). MR1243389. https://doi.org/10.1239/aap/1029955143
Leipus, R., Šiaulys, J.: On the random max-closure for heavy-tailed random variables. Lith. Math. J. 57(2), 208–221 (2017). MR3654985. https://doi.org/10.1007/s10986-017-9355-2
Pitts, S.M.: A functional approach to approximations for the individual risk model. ASTIN Bull. 34, 379–397 (2004). MR2086451. https://doi.org/10.1017/S051503610001374X
Presman, E.L.: Approximation in variation of the distribution of a sum of independent Bernoulli variables with a Poisson law. Theory Probab. Appl. 30(2), 417–422 (1986). MR0792634. https://doi.org/10.1137/1130051
Roos, B.: On variational bounds in the compound Poisson approximation of the individual risk model. Insur. Math. Econ. 40, 403–414 (2007). MR2310979. https://doi.org/10.1016/j.insmatheco.2006.06.003
Šliogere, J., Čekanavičius, V.: Two limit theorems for Markov binomial distribution. Lith. Math. J. 55(3), 451–463 (2015). MR3379037. https://doi.org/10.1007/s10986-015-9291-y
Šliogere, J., Čekanavičius, V.: Approximation of symmetric three-state Markov chain by compound Poisson law. Lith. Math. J. 56(3), 417–438 (2016). MR3530227. https://doi.org/10.1007/s10986-016-9326-z
Wang, K., Gao, M., Yang, Y., Chen, Y.: Asymptotics for the finite-time ruin probability in a discrete-time risk model with dependent insurance and financial risks. Lith. Math. J. 58(1), 113–125 (2018). MR3779067. https://doi.org/10.1007/s10986-017-9378-8
Xia, A., Zhang, M.: On approximation of Markov binomial distributions. Bernoulli 15, 1335–1350 (2009). MR2597595. https://doi.org/10.3150/09-BEJ194
Yang, G., Miao, Y.: Moderate and Large Deviation Estimate for the Markov-Binomial Distribution. Acta Appl. Math. 110, 737–747 (2010). MR2610590. https://doi.org/10.1007/s10440-009-9471-z
Yang, Y., Wang, Y.: Tail behavior of the product of two dependent random variables with applications to risk theory. Extremes 16(1), 55–74 (2013). MR3020177. https://doi.org/10.1007/s10687-012-0153-2
Zhang, H., Liu, Y., Li, B.: Notes on discrete compound Poisson model with applications to risk theory. Insur. Math. Econ. 59, 325–336 (2014). MR3283233. https://doi.org/10.1016/j.insmatheco.2014.09.012