Convergence rates in the central limit theorem for weighted sums of Bernoulli random fields
Volume 6, Issue 2 (2019), pp. 251–267
Pub. online: 21 December 2018
Type: Research Article
Open Access
Received
20 December 2017
20 December 2017
Revised
19 October 2018
19 October 2018
Accepted
20 October 2018
20 October 2018
Published
21 December 2018
21 December 2018
Abstract
Moment inequalities for a class of functionals of i.i.d. random fields are proved. Then rates are derived in the central limit theorem for weighted sums of such randoms fields via an approximation by m-dependent random fields.
References
Bentkus, V., Sunklodas, J.K.: On normal approximations to strongly mixing random fields. Publ. Math. (Debr.) 70(3-4), 253–270 (2007). MR2310650
Berry, A.C.: The accuracy of the Gaussian approximation to the sum of independent variates. Trans. Am. Math. Soc. 49, 122–136 (1941). MR0003498. https://doi.org/10.2307/1990053
Biermé, H., Durieu, O.: Invariance principles for self-similar set-indexed random fields. Trans. Am. Math. Soc. 366(11), 5963–5989 (2014). MR3256190. https://doi.org/10.1090/S0002-9947-2014-06135-7
Bulinski, A.V.: On the convergence rates in the CLT for positively and negatively dependent random fields. In: Probability Theory and Mathematical Statistics (St. Petersburg, 1993), pp. 3–14. Gordon and Breach, Amsterdam (1996). MR1661688
Bulinski, A., Kryzhanovskaya, N.: Convergence rate in CLT for vector-valued random fields with self-normalization. Probab. Math. Stat. 26(2), 261–281 (2006). MR2325308
Bulinskii, A.V., Doukhan, P.: Vitesse de convergence dans le théorème de limite centrale pour des champs mélangeants satisfaisant des hypothèses de moment faibles. C. R. Acad. Sci. Paris Sér. I Math. 311(12), 801–805 (1990). MR1082637
Chen, L.H.Y., Shao, Q.-M.: Normal approximation under local dependence. Ann. Probab. 32(3A), 1985–2028 (2004). MR2073183. https://doi.org/10.1214/009117904000000450
El Machkouri, M., Ouchti, L.: Exact convergence rates in the central limit theorem for a class of martingales. Bernoulli 13(4), 981–999 (2007). MR2364223. https://doi.org/10.3150/07-BEJ6116
El Machkouri, M.: Kernel density estimation for stationary random fields. ALEA Lat. Am. J. Probab. Math. Stat. 11(1), 259–279 (2014). MR3225977
El Machkouri, M., Stoica, R.: Asymptotic normality of kernel estimates in a regression model for random fields. J. Nonparametr. Stat. 22(8), 955–971 (2010). MR2738877. https://doi.org/10.1080/10485250903505893
El Machkouri, M., Volný, D., Wu, W.B.: A central limit theorem for stationary random fields. Stoch. Process. Appl. 123(1), 1–14 (2013). MR2988107. https://doi.org/10.1016/j.spa.2012.08.014
Esseen, C.-G.: On the Liapounoff limit of error in the theory of probability. Ark. Mat. Astron. Fys. 28A(9), 19 (1942). MR0011909
Jirak, M.: Berry-Esseen theorems under weak dependence. Ann. Probab. 44(3), 2024–2063 (2016). MR3502600. https://doi.org/10.1214/15-AOP1017
Johnson, W.B., Schechtman, G., Zinn, J.: Best constants in moment inequalities for linear combinations of independent and exchangeable random variables. Ann. Probab. 13(1), 234–253 (1985). MR0770640
Klicnarová, J., Volný, D., Wang, Y.: Limit theorems for weighted Bernoulli random fields under Hannan’s condition. Stoch. Process. Appl. 126(6), 1819–1838 (2016). MR3483738. https://doi.org/10.1016/j.spa.2015.12.006
Liu, W., Xiao, H., Wu, W.B.: Probability and moment inequalities under dependence. Stat. Sin. 23(3), 1257–1272 (2013). MR3114713
Merlevède, F., Peligrad, M.: Rosenthal-type inequalities for the maximum of partial sums of stationary processes and examples. Ann. Probab. 41(2), 914–960 (2013). MR3077530. https://doi.org/10.1214/11-AOP694
Mielkaitis, E., Paulauskas, V.: Rates of convergence in the CLT for linear random fields. Lith. Math. J. 51(2), 233–250 (2011). MR2805741. https://doi.org/10.1007/s10986-011-9122-8
Nakhapetyan, B.S., Petrosyan, A.N.: On the rate of convergence in the central limit theorem for martingale-difference random fields. Izv. Nats. Akad. Nauk Armenii Mat. 39(2), 59–68 (2004). MR2167826
Pavlenko, D.A.: An estimate for the rate of convergence in the central limit theorem for a class of random fields. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 3, 85–87 (1993). MR1355526
Peligrad, M., Utev, S., Wu, W.B.: A maximal ${\mathbb{L}_{p}}$-inequality for stationary sequences and its applications. Proc. Am. Math. Soc. 135(2), 541–550 (2007). MR2255301. https://doi.org/10.1090/S0002-9939-06-08488-7
Rio, E.: Théorie Asymptotique des Processus Aléatoires Faiblement Dépendants. Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 31, p. 169. Springer, Berlin (2000). MR2117923
Rio, E.: Moment inequalities for sums of dependent random variables under projective conditions. J. Theor. Probab. 22(1), 146–163 (2009). MR2472010. https://doi.org/10.1007/s10959-008-0155-9
Rosenthal, H.P.: On the subspaces of ${L^{p}}$ $(p\mathrm{>}2)$ spanned by sequences of independent random variables. Isr. J. Math. 8, 273–303 (1970). MR0271721. https://doi.org/10.1007/BF02771562
Shao, Q.M.: Maximal inequalities for partial sums of ρ-mixing sequences. Ann. Probab. 23(2), 948–965 (1995). MR1334179
Truquet, L.: A moment inequality of the Marcinkiewicz-Zygmund type for some weakly dependent random fields. Stat. Probab. Lett. 80(21–22), 1673–1679 (2010). MR2684016. https://doi.org/10.1016/j.spl.2010.07.011
Wu, W.B.: Nonlinear system theory: another look at dependence. Proc. Natl. Acad. Sci. USA 102(40), 14150–14154 (2005). MR2172215. https://doi.org/10.1073/pnas.0506715102
Yang, W., Wang, X., Li, X., Hu, S.: Berry-Esséen bound of sample quantiles for ϕ-mixing random variables. J. Math. Anal. Appl. 388(1), 451–462 (2012). MR2869760. https://doi.org/10.1016/j.jmaa.2011.10.058