Malliavin–Stein method: a survey of some recent developments
Volume 8, Issue 2 (2021), pp. 141–177
Pub. online: 22 June 2021
Type: Research Article
Open Access
Received
12 February 2021
12 February 2021
Revised
28 May 2021
28 May 2021
Accepted
10 June 2021
10 June 2021
Published
22 June 2021
22 June 2021
Abstract
Initiated around the year 2007, the Malliavin–Stein approach to probabilistic approximations combines Stein’s method with infinite-dimensional integration by parts formulae based on the use of Malliavin-type operators. In the last decade, Malliavin–Stein techniques have allowed researchers to establish new quantitative limit theorems in a variety of domains of theoretical and applied stochastic analysis. The aim of this survey is to illustrate some of the latest developments of the Malliavin–Stein method, with specific emphasis on extensions and generalizations in the framework of Markov semigroups and of random point measures.
References
A webpage about Stein’s method and Malliavin calculus (by I. Nourdin). https://sites.google.com/site/malliavinstein/home
Arras, B., Azmoodeh, E., Poly, G., Swan, Y.: A bound on the 2-Wasserstein distance between linear combinations of independent random variables. Stoch. Process. Appl. 129(7), 2341–2375 (2019). MR3958435. https://doi.org/10.1016/j.spa.2018.07.009
Arras, B., Azmoodeh, E., Poly, G., Swan, Y.: Stein characterizations for linear combinations of gamma random variables. Braz. J. Probab. Stat. 34(2), 394–413 (2020). MR4093265. https://doi.org/10.1214/18-BJPS420
Arras, B., Mijoule, G., Poly, G., Swan, Y.: A new approach to the Stein-Tikhomirov method: with applications to the second Wiener chaos and Dickman convergence (2016). arXiv:1605.06819
Azmoodeh, E., Campese, S., Poly, G.: Fourth Moment Theorems for Markov diffusion generators. J. Funct. Anal. 266(4), 2341–2359 (2014). MR3150163. https://doi.org/10.1016/j.jfa.2013.10.014
Azmoodeh, E., Eichelsbacher, P., Knichel, L.: Optimal gamma approximation on Wiener space. ALEA Lat. Am. J. Probab. Math. Stat. 17(1), 101–132 (2020). MR4057185. https://doi.org/10.30757/alea.v17-05
Azmoodeh, E., Gasbarra, D.: New moments criteria for convergence towards normal product/tetilla laws (2017). arXiv:1708.07681
Azmoodeh, E., Malicet, D., Mijoule, G., Poly, G.: Generalization of the Nualart-Peccati criterion. Ann. Probab. 44(2), 924–954 (2016). MR3474463. https://doi.org/10.1214/14-AOP992
Azmoodeh, E., Peccati, G., Poly, G.: Convergence towards linear combinations of chi-squared random variables: a Malliavin-based approach. In: In memoriam Marc Yor—Séminaire de Probabilités XLVII. Lecture Notes in Math., vol. 2137, pp. 339–367. Springer, Cham (2015). MR3444306. https://doi.org/10.1007/978-3-319-18585-9_16
Bakry, D.: L‘hypercontractivité et son utilisation en théorie des semigroupes. In: Lectures on probability theory, Saint-Flour, 1992. Lecture Notes in Math., vol. 1581, pp. 1–114. Springer, Berlin (1994). MR1307413. https://doi.org/10.1007/BFb0073872
Barbour, A.D.: Stein’s method for diffusion approximations. Probab. Theory Relat. Fields 84(3), 297–322 (1990). MR1035659. https://doi.org/10.1007/BF01197887
Barbour, A.D., Janson, S.: A functional combinatorial central limit theorem. Electron. J. Probab. 14, 2352–2370 (2009). MR2556014. https://doi.org/10.1214/EJP.v14-709
Baryshnikov, Yu., Yukich, J.E.: Gaussian limits for random measures in geometric probability. Ann. Appl. Probab. 15(1A), 213–253 (2005). MR2115042. https://doi.org/10.1214/105051604000000594
Biermé, H., Bonami, A., Nourdin, I., Peccati, G.: Optimal Berry-Esseen rates on the Wiener space: the barrier of third and fourth cumulants. ALEA Lat. Am. J. Probab. Math. Stat. 9(2), 473–500 (2012). MR3069374
Bonis, Th.: Stein’s method for normal approximation in Wasserstein distances with application to the multivariate central limit theorem. Probab. Theory Relat. Fields 178, 827–860 (2020). MR4168389. https://doi.org/10.1007/s00440-020-00989-4
Bourguin, S., Campese, S., Leonenko, N., Taqqu, M.S.: Four moments theorems on Markov chaos. Ann. Probab. 47(3), 1417–1446 (2019). MR3945750. https://doi.org/10.1214/18-AOP1287
Bourguin, S., Campese, S.: Approximation of Hilbert-Valued Gaussians on Dirichlet structures. Electron. J. Probab. 25, 150 (2020), 30 pp. MR4193891. https://doi.org/10.1214/20-ejp551
Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators. Springer (2014). MR3155209. https://doi.org/10.1007/978-3-319-00227-9
Campese, S., Nourdin, I., Nualart, D.: Continuous Breuer-Major theorem: tightness and non-stationarity. Ann. Probab. 48(1), 147–177 (2020). MR4079433. https://doi.org/10.1214/19-AOP1357
Can, V.H., Trinh, K.D.: Random connection models in the thermodynamic regime: central limit theorems for add-one cost stabilizing functionals arXiv:2004.06313 (2020). MR4049088. https://doi.org/10.1214/19-ecp279
Chatterjee, S.: Fluctuations of eigenvalues and second order Poincaré inequalities. Probab. Theory Relat. Fields 143, 1–40 (2009). MR2449121. https://doi.org/10.1007/s00440-007-0118-6
Chatterjee, S., Sen, S.: Minimal spanning trees and Stein’s method. Ann. Appl. Probab. 27(3), 1588–1645 (2017). MR3678480. https://doi.org/10.1214/16-AAP1239
Chen, L.H.Y., Goldstein, L., Shao, Q.M.: Normal approximation by Stein’s method. Springer (2010). MR2732624. https://doi.org/10.1007/978-3-642-15007-4
Chen, L.H., Poly, G.: Stein’s method, Malliavin calculus, Dirichlet forms and the fourth moment theorem. In: Festschrift of Masatoshi Fukushima. Interdisciplinary Mathematical Sciences, vol. 17, pp. 107–130 (2015). MR3379337. https://doi.org/10.1142/9789814596534_0006
Courtade, T.A., Fathi, M., Pananjady, A.: Existence of Stein kernels under a spectral gap, and discrepancy bounds. Ann. Inst. Henri Poincaré Probab. Stat. 55(2), 777–790 (2019). MR3949953. https://doi.org/10.1214/18-aihp898
Coutin, L., Decreusefond, L.: Stein’s method for Brownian approximations. Commun. Stoch. Anal. 7(3), 349–372 (2014). MR3167403. https://doi.org/10.31390/cosa.7.3.01
Coutin, L., Decreusefond, L.: Higher order approximations via Stein’s method. Commun. Stoch. Anal. 8(2), 155–168 (2014). MR3269842. https://doi.org/10.31390/cosa.8.2.02
Coutin, L., Decreusefond, L.: Stein’s method for rough paths. Potential Anal. 53(2), 387–406 (2020). MR4125096. https://doi.org/10.1007/s11118-019-09773-z
Coutin, L., Decreusefond, L.: Donsker’s theorem in Wasserstein-1 distance. Electron. Commun. Probab. 25, 27 (2020), 13 pp. MR4089734. https://doi.org/10.1214/20-ecp308
Decreusefond, L.: The Stein-Dirichlet-Malliavin method. ESAIM Proc. Surveys, vol. 51. EDP Sci., Les Ulis (2015). MR3440790. https://doi.org/10.1051/proc/201551003
Decreusefond, L., Halconruy, H.: Malliavin and Dirichlet structures for independent random variables. Stoch. Process. Appl. 129(8), 2611–2653 (2019). MR3980139. https://doi.org/10.1016/j.spa.2018.07.019
Decreusefond, L., Schulte, M., Thäle, Ch.: Functional Poisson approximation in Kantorovich-Rubinstein distance with applications to U-statistics and stochastic geometry. Ann. Probab. 44(3), 2147–2197 (2016). MR3502603. https://doi.org/10.1214/15-AOP1020
Döbler, C.: Normal approximation via non-linear exchangeable pairs (2020). arXiv:2008.02272
Döbler, C., Kasprzak, M.: Stein’s method of exchangeable pairs in multivariate functional approximations. Elec. J. Probab. (2021, to appear). MR4235479. https://doi.org/10.18287/2541-7525-2020-26-2-23-49
Döbler, C., Kasprzak, M., Peccati, G.: Functional convergence of sequential U-processes with size-dependent kernels, arXiv:2008.02272 (2019).
Döbler, C., Peccati, G.: The Gamma Stein equation and non-central de Jong theorems. Bernoulli 24(4B), 3384–3421 (2018). MR3788176. https://doi.org/10.3150/17-BEJ963
Döbler, C., Peccati, G.: The fourth moment theorem on the Poisson space. Ann. Probab. 46(4), 1878–1916 (2018). MR3813981. https://doi.org/10.1214/17-AOP1215
Döbler, C., Vidotto, A., Zheng, G.: Fourth moment theorems on The Poisson space in any dimension. Electron. J. Probab. 23, 36 (2018), 27 pp. MR3798246. https://doi.org/10.1214/18-EJP168
Eichelsbacher, P., Thäle, C.: Malliavin-Stein method for Variance-Gamma approximation on Wiener space. Electron. J. Probab. 20(123), 1–28 (2014). MR3425543. https://doi.org/10.1214/EJP.v20-4136
Fathi, M.: Stein kernels and moment maps. Ann. Probab. 47(4), 2172–2185 (2019). MR3980918. https://doi.org/10.1214/18-AOP1305
Gaunt, R.E.: Wasserstein and Kolmogorov error bounds for variance-gamma approximation via Stein’s method I. J. Theor. Probab. 33, 465–505 (2020). https://doi.org/10.1007/s10959-018-0867-4
Gaunt, R.E.: Stein factors for variance-gamma approximation in the Wasserstein and Kolmogorov distances (2020). arXiv:2008.06088. MR4064309. https://doi.org/10.1007/s10959-018-0867-4
Gaunt, R.E., Mijoule, G., Swan, Y.: An algebra of Stein operators. J. Math. Anal. Appl. 469(1), 260–279 (2019). MR3857522. https://doi.org/10.1016/j.jmaa.2018.09.015
Kasprzak, M.: Stein’s method for multivariate Brownian approximations of sums under dependence. Stoch. Process. Appl. 130(8), 4927–4967 (2020). MR4108478. https://doi.org/10.1016/j.spa.2020.02.006
Kesten, H., Lee, S.: The central limit theorem for weighted minimal spanning trees on random points. Ann. Appl. Probab. 6(2), 495–527 (1996). MR1398055. https://doi.org/10.1214/aoap/1034968141
Krein, Ch.: Weak convergence on Wiener space: targeting the first two chaoses. ALEA Lat. Am. J. Probab. Math. Stat. 16(1), 85–139 (2019). MR3903026. https://doi.org/10.30757/ALEA.v16-05
Lachièze-Rey, R., Peccati, G., Yang, X.: Quantitative two-scale stabilization on the Poisson space (2020). arXiv:2010.13362. MR4108865. https://doi.org/10.1090/proc/14964
Lachièze-Rey, R., Schultei, M., Yukich, J.: Normal approximation for stabilizing functionals. Ann. Appl. Probab. 29(2), 931–993 (2019). MR3910021. https://doi.org/10.1214/18-AAP1405
Last, G.: Stochastic analysis for Poisson processes. In: Stochastic Analysis for Poisson Point Processes. Malliavin Calculus, Wiener-Itô Chaos Expansions and Stochastic Geometry, pp. 1–36. Springer (2016). MR3585396. https://doi.org/10.1007/978-3-319-05233-5_1
Last, G., Penrose, M.: Lectures on the Poisson Process. Cambridge University Press (2017). MR3791470
Ledoux, M.: Chaos of a Markov operator and the fourth moment condition. Ann. Probab. 40(6), 2439–2459 (2012). MR3050508. https://doi.org/10.1214/11-AOP685
Ledoux, M., Nourdin, I., Peccati, G.: Stein’s method, logarithmic Sobolev and transport inequalities. Geom. Funct. Anal. 25, 256–306 (2015). MR3320893. https://doi.org/10.1007/s00039-015-0312-0
Ledoux, M., Nourdin, I., Peccati, G.: A Stein deficit for the logarithmic Sobolev inequality. Sci. China Math. 60(7), 1163–1180 (2016). MR3665794. https://doi.org/10.1007/s11425-016-0134-7
Last, G., Peccati, G., Schulte, M.: Normal approximation on Poisson spaces: Mehler’s formula, second order Poincaré inequalities and stabilization. Probab. Theory Relat. Fields 165(3–4), 667–723 (2016). MR3520016. https://doi.org/10.1007/s00440-015-0643-7
Malliavin, P.: Stochastic calculus of variations and hypoelliptic operators. In: Proceedings of the International Symposium on Stochastic Differential Equations, Kyoto, pp. 195–263. Wiley, New York (1976). 1978. MR0536013
Malliavin, P.: Stochastic Analysis. Springer (1997). MR1450093. https://doi.org/10.1007/978-3-642-15074-6
Notarnicola, M.: Fluctuations of nodal sets on the 3-torus and general cancellation phenomena (2020). arXiv:2004.04990
Nourdin, I.: In: Lectures on Gaussian approximations with Malliavin calculus. Sém. Probab., XLV, pp. 3–89 (2012). MR3185909. https://doi.org/10.1017/CBO9781139084659
Nourdin, I., Nualart, D.: The functional Breuer-Major theorem. Probab. Theory Relat. Fields 176, 203–218 (2020). MR4055189. https://doi.org/10.1007/s00440-019-00917-1
Nourdin, I., Nualart, D., Peccati, G.: The Breuer-Major theorem in total variation: improved rates under minimal regularity. Stoch. Process. Appl. 131, 1–20 (2021). MR4151212. https://doi.org/10.1016/j.spa.2020.08.007
Nourdin, I., Peccati, G.: Noncentral convergence of multiple integrals. Ann. Probab. 37(4), 1412–1426 (2009). MR2546749. https://doi.org/10.1214/08-AOP435
Nourdin, I., Peccati, G.: Stein’s method on Wiener chaos. Probab. Theory Relat. Fields 145(1–2), 75–118 (2009). MR2520122. https://doi.org/10.1007/s00440-008-0162-x
Nourdin, I., Peccati, G.: Cumulants on the Wiener space. J. Funct. Anal. 258(11), 3775–3791 (2010). MR2606872. https://doi.org/10.1016/j.jfa.2009.10.024
Nourdin, I., Peccati, G.: Normal Approximations with Malliavin Calculus: From Stein’s Method to Universality. Cambridge Tracts in Mathematics. Cambridge University Press (2012). MR2962301. https://doi.org/10.1017/CBO9781139084659
Nourdin, I., Peccati, G.: The optimal fourth moment theorem. Proc. Am. Math. Soc. 143(7), 3123–3133 (2015). MR3336636. https://doi.org/10.1090/S0002-9939-2015-12417-3
Nourdin, I., Peccati, G., Rossi, M.: Nodal statistics of planar random waves. Commun. Math. Phys. 369(1), 99–151 (2019). MR3959555. https://doi.org/10.1007/s00220-019-03432-5
Nourdin, I., Poly, G.: Convergence in law in the second Wiener/Wigner chaos. Electron. Commun. Probab. 17(36), 1–12 (2012). MR2970700. https://doi.org/10.1214/ecp.v17-2023
Nourdin, I., Peccati, G., Reinert, G.: Second order Poincaré inequalities and CLTs on Wiener space. J. Funct. Anal. 257(4), 1005–1041 (2009). MR2527030. https://doi.org/10.1016/j.jfa.2008.12.017
Nourdin, I., Peccati, G., Reinert, G.: Invariance principles for homogeneous sums: universality of Gaussian Wiener chaos. Ann. Probab. 38(5), 1947–1985 (2010). MR2722791. https://doi.org/10.1214/10-AOP531
Nourdin, I., Peccati, G., Swan, Y.: Entropy and the fourth moment phenomenon. J. Funct. Anal. 266(5), 3170–3207 (2014). MR3158721. https://doi.org/10.1016/j.jfa.2013.09.017
Nourdin, I., Peccati, G., Yang, X.: Berry-Esseen bounds in the Breuer-Major CLT and Gebelein’s inequality. Electron. Commun. Probab. 24, 34 (2019). MR3978683. https://doi.org/10.1214/19-ECP241
Nourdin, I., Peccati, G., Yang, X.:. Multivariate normal approximation on the Wiener space: new bounds in the convex distance (2020). arxiv:2001.02188. MR2606872. https://doi.org/10.1016/j.jfa.2009.10.024
Nourdin, I., Rosinski, J.: Asymptotic independence of multiple Wiener-Ito integrals and the resulting limit laws. Ann. Probab. 42(2), 497–526 (2014). MR3178465. https://doi.org/10.1214/12-AOP826
Nualart, D.: The Malliavin Calculus and Related Topics. Probability and its Applications, 2 edn. Springer, Berlin and Heidelberg and New York (2006). MR2200233
Nualart, D.: Malliavin Calculus and Its Applications. CBMS Regional Conference Series in Mathematics, vol. 110 (2009). MR2498953. https://doi.org/10.1090/cbms/110
Nualart, D., Ortiz-Latorre, S.: Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stoch. Process. Appl. 118(4), 614–628 (2008). MR2394845. https://doi.org/10.1016/j.spa.2007.05.004
Nualart, D., Peccati, G.: Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33(1), 177–193 (2005). MR2118863. https://doi.org/10.1214/009117904000000621
Peccati, G., Reitzner, M. (eds.): Stochastic Analysis for Poisson Point Processes. Malliavin Calculus, Wiener-Itô Chaos Expansions and Stochastic Geometry Springer (2016). MR3444831. https://doi.org/10.1007/978-3-319-05233-5
Peccati, G., Rossi, M.: Quantitative limit theorems for local functionals of arithmetic random waves. In: Combinatorics in Dynamics, Stochastics and Control, The Abel Symposium, Rosendal, Norway, August 2016, vol. 13, pp. 659–689 (2018). MR3967400. https://doi.org/10.1007/978-3-030-01593-0_23
Peccati, G., Solé, J-., Utzet, F., Taqqu, M.S.: Stein’s method and normal approximation of Poisson functionals. Ann. Probab. 38, 443–478 (2010). MR2642882. https://doi.org/10.1214/10-AOP531
Peccati, G., Taqqu, M.S.: Wiener Chaos: Moments, Cumulants and Diagrams. Springer (2010). MR2791919. https://doi.org/10.1007/978-88-470-1679-8
Peccati, G., Vidotto, A.: Gaussian random measures generated by Berry’s nodal sets. J. Stat. Phys. 178(4), 443–478 (2020). MR4064212. https://doi.org/10.1007/s10955-019-02477-z
Penrose, M.D.: Multivariate spatial central limit theorems with applications to percolation and spatial graphs. Ann. Probab. 33(5), 1945–1991 (2005). MR2165584. https://doi.org/10.1214/009117905000000206
Penrose, M.D., Yukich, J.E.: Central limit theorems for some graphs in computational geometry. Ann. Appl. Probab. 11(4), 1005–1041 (2001). MR1878288. https://doi.org/10.1214/aoap/1015345393
Rossi, M.: Random nodal lengths and Wiener chaos. In: Probabilistic Methods in Geometry, Topology and Spectral Theory. Probabilistic Methods in Geometry, Topology and Spectral Theory. Contemporary Mathematics Series, vol. 739, pp. 155–169 (2019). MR4033918. https://doi.org/10.1090/conm/739/14898
Saumard, A.: Weighted Poincaré inequalities, concentration inequalities and tail bounds related to the behavior of the Stein kernel in dimension one. Bernoulli 25(4B), 3978–4006 (2019). MR4010979. https://doi.org/10.3150/19-BEJ1117
Schulte, M., Yukich, J.E.: Multivariate second order Poincaré inequalities for Poisson functionals. Electron. J. Probab. 24, 130 (2019), 42 pp. MR4040990. https://doi.org/10.1214/19-ejp386
Shih, H.-H.: On Stein’s method for infinite-dimensional Gaussian approximation in abstract Wiener spaces. J. Funct. Anal. 261(5), 1236–1283 (2011). MR2807099. https://doi.org/10.1016/j.jfa.2011.04.016
Stein, C.: A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, II, pp. 583–602 (1972). MR0402873
Stein, C.: Approximate computation of expectations. In: IMS. Lecture Notes-Monograph Series, vol. 7 (1986). MR0882007
Todino, A.P.: A quantitative central limit theorem for the excursion area of random spherical harmonics over subdomains of ${S^{2}}$. J. Math. Phys. 60(2), 023505 (2019). MR3916834. https://doi.org/10.1063/1.5048976
Trinh, K.D.: On central limit theorems in stochastic geometry for add-one cost stabilizing functionals. Electron. Commun. Probab. 24, 76 (2019), 15 pp. MR4049088. https://doi.org/10.1214/19-ecp279
Vidotto, A.: An improved second order Poincaré inequality for functionals of Gaussian fields (2017). arXiv:1706.06985. MR4064306. https://doi.org/10.1007/s10959-019-00883-3
Villani, C.: Optimal Transport. Old and New. Springer (2009). MR2459454. https://doi.org/10.1007/978-3-540-71050-9
Yogeshwaran, D., Subag, E., Adler, R.J.: Random geometric complexes in the thermodynamic regime. Probab. Theory Relat. Fields 167(1–2), 107–142 (2017). MR3602843. https://doi.org/10.1007/s00440-015-0678-9