1 Introduction
Survival analysis models time to an event of interest (e.g., lifetime). It is a powerful tool in biometrics, epidemiology, engineering, and credit risk assessment in financial institutions. The proportional hazards model proposed in Cox (1972) [3] is a widely used technique to characterize a relation between survival time and covariates.
Our model is presented in Augustin (2004) [1] where the baseline hazard function $\lambda (\cdot )$ is assumed to belong to a parametric space, while we consider $\lambda (\cdot )$ belonging to a closed convex subset of $C[0,\tau ]$. In practice covariates are often contaminated by errors, so we deal with errors-in-variables model. Kukush et al. (2011) [5] derive a simultaneous estimator of the baseline hazard rate $\lambda (\cdot )$ and the regression parameter β and prove the consistency of the estimator. At that, the parameter set $\varTheta _{\lambda }$ for the baseline hazard rate is assumed to be bounded and separated away from zero. The asymptotic normality of the estimator is shown in Chimisov and Kukush (2014) [2]. In [7, 6] we construct an estimator $({\hat{\lambda }_{n}^{(1)}}(\cdot ),\hspace{2.5pt}{\hat{\beta }_{n}^{(1)}})$ of $\lambda (\cdot )$ and β over the parameter set $\varTheta =\varTheta _{\lambda }\times \varTheta _{\beta }\hspace{2.5pt}$, where n is the sample size and $\varTheta _{\lambda }$ is a subset of $C[0,\tau ]$, which is unbounded from above and not separated away from zero. The estimator is consistent and can be modified to be asymptotically normal.
The goal of present paper is to construct confidence intervals for integral functionals of $\lambda (\cdot )$ and a confidence region for β based on the estimators from [7, 6]. We impose certain restrictions on the error distribution. Actually we handle three cases: (a) the measurement error is bounded, (b) it is a normally distributed random vector, and (c) it has independent components which are shifted Poisson random variables.
The paper is organized as follows. Section 2 describes the observation model, gives main assumptions, defines an estimator under an unbounded parameter set, and states the asymptotic normality result from [7, 6]. Sections 3 and 4 present the main results: a confidence region for the regression parameter and confidence intervals for integral functionals of the baseline hazard rate. Section 5 provides a method to compute auxiliary consistent estimates, and Section 6 concludes.
Throughout the paper, all vectors are column ones, $\mathsf{E}$ stands for the expectation, $\mathsf{Var}$ stands for the variance, and $\mathsf{Cov}$ for the covariance matrix. A relation holds eventually if it is valid for all sample sizes n starting from some random number, almost surely.
2 The model and estimator
Let T denote the lifetime and have the intensity function
\[ \lambda (t|X;\lambda _{0},\beta _{0})=\lambda _{0}(t)\exp \big({\beta _{0}^{\top }}X\big),\hspace{1em}t\ge 0.\]
A covariate X is a time-independent random vector distributed in ${\mathbb{R}}^{m}$, β is a parameter belonging to $\varTheta _{\beta }\subset {\mathbb{R}}^{m}$, and $\lambda (\cdot )\in \varTheta _{\lambda }\subset C[0,\tau ]$ is a baseline hazard function.We observe censored data, i.e., instead of T only a censored lifetime $Y:=\min \{T,C\}$ and the censorship indicator $\varDelta :=I_{\{T\le C\}}$ are available, where the censor C is distributed on a given interval $[0,\tau ]$. The survival function of censor $G_{C}(u):=1-F_{C}(u)$ is unknown. The conditional pdf of T given X is
The conditional survival function of T given X equals
We deal with an additive error model, which means that instead of X, a surrogate variable
is observed. We suppose that a random error U has known moment generating function $M_{U}(z):=\mathsf{E}{e}^{{z}^{\top }U}$, where $||z||$ is bounded according to assumptions stated below. A couple $(T,X)$, censor C, and measurement error U are stochastically independent.
Introduce assumptions from [7, 6].
-
(i) $\varTheta _{\lambda }\subset C[0,\tau ]$ is the following closed convex set of nonnegative functions\[\begin{array}{r@{\hskip0pt}l}\displaystyle \varTheta _{\lambda }:=\big\{& \displaystyle f:[0,\tau ]\to \mathbb{R}|\hspace{0.2778em}f(t)\ge 0,\forall t\in [0,\tau ]\hspace{2.5pt}\text{and}\\{} & \displaystyle \big|f(t)-f(s)\big|\le L|t-s|,\hspace{2.5pt}\forall t,s\in [0,\tau ]\big\},\end{array}\]where $L>0$ is a fixed constant.
-
(ii) $\varTheta _{\beta }\subset {\mathbb{R}}^{m}$ is a compact set.
-
(iv) $\mathsf{E}{e}^{2D\| X\| }<\infty $, where D is defined in (iii).
-
(v) τ is the right endpoint of the distribution of C, that is $\mathsf{P}(C>\tau )=0$ and for all $\epsilon >0$, $\mathsf{P}(C>\tau -\epsilon )>0$.
-
(vi) The covariance matrix of random vector X is positive definite.
-
(vii) The couple of true parameters $(\lambda _{0},\beta _{0})$ belongs to Θ given in (1), and moreover $\lambda _{0}(t)>0$, $t\in [0,\tau ]$.
-
(viii) $\beta _{0}$ is an interior point of $\varTheta _{\beta }$.
-
(ix) $\lambda _{0}\in {\varTheta _{\lambda }^{\epsilon }}$ for some $\epsilon >0$, with\[\begin{array}{r@{\hskip0pt}l}\displaystyle {\varTheta _{\lambda }^{\epsilon }}:=\big\{& \displaystyle f:[0,\tau ]\to \mathbb{R}\hspace{2.5pt}|\hspace{2.5pt}f(t)\ge \epsilon ,\hspace{0.2778em}\forall t\in [0,\tau ]\hspace{2.5pt}\text{and}\\{} & \displaystyle \big|f(t)-f(s)\big|\le (L-\epsilon )|t-s|,\forall t,s\in [0,\tau ]\big\}.\end{array}\]
-
(x) $\mathsf{P}(C>0)=1$.
Consider independent copies of the model $(X_{i},T_{i},C_{i},Y_{i},\varDelta _{i},U_{i},W_{i})$, $i=1,\dots ,n$. Based on triples $(Y_{i},\varDelta _{i},W_{i})$, $i=1,\dots ,n$, we estimate true parameters $\beta _{0}$ and $\lambda _{0}(t)$, $t\in [0,\tau ]$. Following Augustin (2004) [1], we use the corrected partial log-likelihood function
with
The estimator [7, 6] of the baseline hazard rate $\lambda (\cdot )$ and parameter β is defined as follows.
Definition 1.
Fix a sequence $\{\varepsilon _{n}\}$ of positive numbers, with $\varepsilon _{n}\downarrow 0$, as $n\to \infty $. The corrected estimator $({\hat{\lambda }_{n}^{(1)}},{\hat{\beta }_{n}^{(1)}})$ of $(\lambda ,\beta )$ is a Borel measurable function of observations $(Y_{i},\varDelta _{i},W_{i})$, $i=1,\dots ,n$, with values in Θ and such that
Theorem 3 from [7, 6] proves that under conditions (i) to (vii) the corrected estimator $({\hat{\lambda }_{n}^{(1)}},{\hat{\beta }_{n}^{(1)}})$ is a strongly consistent estimator of the true parameters $(\lambda _{0},\beta _{0})$. In the proof of Theorem 3 from [7, 6], it is shown that eventually and for R large enough, the upper bound on the right-hand side of (2) can be taken over the set ${\varTheta }^{R}:={\varTheta _{\lambda }^{R}}\times \varTheta _{\beta }$, with
where $\bar{B}(0,R)$ denotes the closed ball in $C[0,\tau ]$ with center in the origin and radius R. Thus, we assume that for all $n\ge 1$,
and $({\hat{\lambda }_{n}^{(1)}},{\hat{\beta }_{n}^{(1)}})\in {\varTheta }^{R}$. Notice that ${\varTheta }^{R}$ is a compact set in $C[0,\tau ]$.
(3)
\[ {Q_{n}^{cor}}\big({\hat{\lambda }_{n}^{(1)}},{\hat{\beta }_{n}^{(1)}}\big)\ge \underset{(\lambda ,\beta )\in {\varTheta }^{R}}{\sup }{Q_{n}^{cor}}(\lambda ,\beta )-\varepsilon _{n}\]Definition 2 from [7, 6] provides, based on $({\hat{\lambda }_{n}^{(1)}},{\hat{\beta }_{n}^{(1)}})$, a modified estimator $({\hat{\lambda }_{n}^{(2)}},{\hat{\beta }_{n}^{(2)}})$ which is consistent and asymptotically normal.
Definition 2.
The modified corrected estimator $({\hat{\lambda }_{n}^{(2)}},{\hat{\beta }_{n}^{(2)}})$ of $(\lambda ,\beta )$ is a Borel measurable function of observations $(Y_{i},\varDelta _{i},W_{i})$, $i=1,\dots ,n$, with values in Θ and such that
\[ \big({\hat{\lambda }_{n}^{(2)}},{\hat{\beta }_{n}^{(2)}}\big)=\left\{\begin{array}{l@{\hskip10.0pt}l}\arg \max \{{Q_{n}^{cor}}(\lambda ,\beta )\hspace{2.5pt}|\hspace{2.5pt}(\lambda ,\beta )\in \varTheta ,\hspace{0.2778em}\mu _{\lambda }\ge \frac{1}{2}\mu _{{\hat{\lambda }_{n}^{(1)}}}\},\hspace{1em}& \text{if}\hspace{2.5pt}\hspace{0.2778em}\mu _{{\hat{\lambda }_{n}^{(1)}}}>0;\\{} ({\hat{\lambda }_{n}^{(1)}},{\hat{\beta }_{n}^{(1)}}),\hspace{1em}& \text{otherwise},\end{array}\right.\]
where $\mu _{\lambda }:=\min _{t\in [0,\tau ]}\lambda (t)$.Below we use notations from [2]. Let
where $\varphi =(\varphi _{\lambda },\varphi _{\beta })\in C[0,\tau ]\times {\mathbb{R}}^{m}$ and ${q^{\prime }}$ denotes the Fréchet derivative.
\[\begin{array}{r@{\hskip0pt}l}\displaystyle a(t)& \displaystyle =\mathsf{E}\big[X{e}^{{\beta _{0}^{\top }}X}G_{T}(t|X)\big],\hspace{1em}b(t)=\mathsf{E}\big[{e}^{{\beta _{0}^{\top }}X}G_{T}(t|X)\big],\hspace{1em}\varLambda (t)={\int _{0}^{t}}\lambda _{0}(t)dt,\\{} \displaystyle p(t)& \displaystyle =\mathsf{E}\big[X{X}^{\top }{e}^{{\beta _{0}^{\top }}X}G_{T}(t|X)\big],\hspace{1em}T(t)=p(t)b(t)-a(t){a}^{\top }(t),\hspace{1em}K(t)=\frac{\lambda _{0}(t)}{b(t)},\\{} \displaystyle A& \displaystyle =\mathsf{E}\Bigg[X{X}^{\top }{e}^{{\beta _{0}^{\top }}X}{\int _{0}^{Y}}\lambda _{0}(u)du\Bigg],\hspace{1em}M={\int _{0}^{\tau }}T(u)K(u)G_{c}(u)du.\end{array}\]
For $i=1,2,\dots $, introduce random variables
\[ \zeta _{i}=-\frac{\varDelta _{i}a(Y_{i})}{b(Y_{i})}+\frac{\exp ({\beta _{0}^{\top }}W_{i})}{M_{U}(\beta _{0})}{\int _{0}^{Y_{i}}}a(u)K(u)du+\frac{\partial q}{\partial \beta }(Y_{i},\varDelta _{i},W_{i},\beta _{0},\lambda _{0}),\]
with
\[ \frac{\partial q}{\partial \beta }(Y,\varDelta ,W;\lambda ,\beta )=\varDelta \cdot W-\frac{M_{U}(\beta )W-\mathsf{E}(U{e}^{{\beta }^{\top }U})}{M_{U}{(\beta )}^{2}}\exp \big({\beta }^{\top }W\big){\int _{0}^{Y}}\lambda (u)du.\]
Let
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \varSigma _{\beta }& \displaystyle =4\cdot \mathsf{Cov}(\zeta _{1}),\hspace{1em}m(\varphi _{\lambda })={\int _{0}^{\tau }}\varphi _{\lambda }(u)a(u)G_{C}(u)du,\\{} \displaystyle {\sigma _{\varphi }^{2}}& \displaystyle =4\cdot \mathsf{Var}\hspace{2.5pt}\big\langle {q^{\prime }}(Y,\varDelta ,W,\lambda _{0},\beta _{0}),\varphi \big\rangle =4\cdot \mathsf{Var}\hspace{2.5pt}\xi (Y,\varDelta ,W),\end{array}\]
with
(4)
\[ \begin{array}{r@{\hskip0pt}l}\displaystyle \xi (Y,\varDelta ,W)& \displaystyle =\frac{\varDelta \cdot \varphi _{\lambda }(Y)}{\lambda _{0}(Y)}-\frac{\exp ({\beta _{0}^{\top }}W)}{M_{U}(\beta _{0})}{\int _{0}^{Y}}\varphi _{\lambda }(u)du+\varDelta \cdot {\varphi _{\beta }^{\top }}W\\{} & \displaystyle \hspace{1em}-{\varphi _{\beta }^{\top }}\frac{M_{U}(\beta _{0})W-\mathsf{E}[U{e}^{{\beta _{0}^{\top }}U}]}{M_{U}{(\beta _{0})}^{2}}\exp \big({\beta _{0}^{\top }}W\big){\int _{0}^{Y}}\lambda _{0}(u)du,\end{array}\]Theorem 1 ([7, 6]).
Assume conditions (i) – (x). Then M is nonsingular and
Moreover, for any Lipschitz continuous function f on $[0,\tau ]$,
(5)
\[ \sqrt{n}\big({\hat{\beta }_{n}^{(2)}}-\beta _{0}\big)\stackrel{\textit{d}}{\to }N_{m}\big(0,{M}^{-1}\varSigma _{\beta }{M}^{-1}\big).\]
\[ \sqrt{n}{\int _{0}^{\tau }}\big({\hat{\lambda }_{n}^{(2)}}-\lambda _{0}\big)(u)f(u)G_{C}(u)du\stackrel{\textit{d}}{\to }N\big(0,{\sigma _{\varphi }^{2}}(f)\big),\]
where ${\sigma _{\varphi }^{2}}(f)={\sigma _{\varphi }^{2}}$ with $\varphi =(\varphi _{\lambda },\varphi _{\beta })$, $\varphi _{\beta }=-{A}^{-1}m(\varphi _{\lambda })$ and $\varphi _{\lambda }$ is a unique solution in $C[0,\tau ]$ to the Fredholm integral equation
3 Confidence regions for the regression parameter
Denote as $\mathsf{E}_{X}[\cdot ]$ the conditional expectation given a random variable X. Remember that $M_{U}(z)=\mathsf{E}{e}^{{z}^{\top }U}$. For simplicity of notation, we write $M_{k,\beta }$ instead of $M_{U}((k+1)\beta )$. Using differentiation in z one can easily prove the following.
Lemma 1.
The equalities hold true:
\[\begin{array}{r@{\hskip0pt}l}\displaystyle {e}^{{z}^{\top }X}& \displaystyle =\frac{\mathsf{E}_{X}[{e}^{{z}^{\top }W}]}{M_{U}(z)},\\{} \displaystyle X{e}^{{z}^{\top }X}& \displaystyle =\frac{1}{M_{U}(z)}\bigg(\mathsf{E}_{X}\big[W{e}^{{z}^{\top }W}\big]-\frac{\mathsf{E}[U{e}^{{z}^{\top }U}]}{M_{U}(z)}\mathsf{E}_{X}\big[{e}^{{z}^{\top }W}\big]\bigg),\\{} \displaystyle X{X}^{\top }{e}^{{z}^{\top }X}& \displaystyle =\frac{1}{M_{U}(z)}\bigg(\mathsf{E}_{X}\big[W{W}^{\top }{e}^{{z}^{\top }W}\big]-2\frac{\mathsf{E}[U{e}^{{z}^{\top }U}]}{M_{U}(z)}\mathsf{E}_{X}\big[{W}^{\top }{e}^{{z}^{\top }W}\big]-\\{} & \displaystyle \hspace{1em}-\bigg(\frac{\mathsf{E}[U{U}^{\top }{e}^{{z}^{\top }U}]}{M_{U}(z)}-2\frac{\mathsf{E}[U{e}^{{z}^{\top }U}]\cdot \mathsf{E}[{U}^{\top }{e}^{{z}^{\top }U}]}{{M_{U}^{2}}(z)}\bigg)\mathsf{E}_{X}\big[{e}^{{z}^{\top }W}\big]\bigg).\end{array}\]
Now, we state conditions on measurement error U under which one can construct unbiased estimators for $a(t)$, $b(t)$ and $p(t)$, $t\in [0,\tau ]$.
Theorem 2.
Suppose that for any $\beta \in \varTheta _{\beta }$ and $A>0$,
with
Then there exist functions $B(\cdot ,\cdot )$, $A(\cdot ,\cdot )$ and $P(\cdot ,\cdot )$ which satisfy deconvolution equations:
-
(a) $\mathsf{E}_{X}[B(W,t)]=\exp ({\beta }^{\top }X-\varLambda (t){e}^{{\beta }^{\top }X})$,
-
(b) $\mathsf{E}_{X}[A(W,t)]=X\exp ({\beta }^{\top }X-\varLambda (t){e}^{{\beta }^{\top }X})$,
-
(c) $\mathsf{E}_{X}[P(W,t)]=X{X}^{\top }\exp ({\beta }^{\top }X-\varLambda (t){e}^{{\beta }^{\top }X})$; $t\in [0,\tau ]$.
Proof.
We find solutions to the equations in a form of series expansions using the idea from Stefanski (1990) [8].
(a) Utilizing Taylor decomposition of the right-hand side, we obtain
Using Lemma 1 take for $k\ge 0$
so that $\mathsf{E}_{X}[B_{k}(W,t)]=g_{k}(X,t)$, $t\in [0,\tau ]$. If we ensure that
then $B(W,t)={\sum _{k=0}^{\infty }}B_{k}(W,t)$ is a solution to the first equation. We have
Here no additional restriction on U is needed.
(b) Similarly, we show that $A(W,t)={\sum _{k=0}^{\infty }}A_{k}(W,t)$, with
\[ A_{k}(W,t):=\frac{{(-1)}^{k}}{k!M_{k,\beta }}{\varLambda }^{k}(t)\bigg[W-\frac{\mathsf{E}[U{e}^{(k+1){\beta }^{\top }U}]}{M_{k,\beta }}\bigg]{e}^{(k+1){\beta }^{\top }W},\]
is a solution to the second equation, if ${\sum _{k=0}^{\infty }}\mathsf{E}_{X}\| A_{k}(W,t)\| <\infty $. We have
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle {\sum \limits_{k=0}^{\infty }}\mathsf{E}_{X}\| A_{k}(W,t)\| \\{} & \displaystyle \hspace{1em}={\sum \limits_{k=0}^{\infty }}\frac{{\varLambda }^{k}(t)}{k!M_{k,\beta }}\mathsf{E}_{X}\bigg|\bigg|X+U-\frac{\mathsf{E}[U{e}^{(k+1){\beta }^{\top }U}]}{M_{k,\beta }}\bigg|\bigg|{e}^{(k+1){\beta }^{\top }(X+U)}\\{} & \displaystyle \hspace{1em}\le \| X\| \exp \big({\beta }^{\top }X+\varLambda (t){e}^{{\beta }^{\top }X}\big)+2{\sum \limits_{k=0}^{\infty }}\frac{{\varLambda }^{k}(t)}{k!}\frac{\mathsf{E}\| U\| {e}^{(k+1){\beta }^{\top }U}}{M_{k,\beta }}{e}^{(k+1){\beta }^{\top }X}.\end{array}\]
The latter sum is finite due to condition (6). Therefore, there exists a solution to the second equation.(c) Finally, for the third equation we put
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle P_{k}(W,t)\\{} & \displaystyle \hspace{1em}=\frac{{(-1)}^{k}{\varLambda }^{k}(t)}{k!M_{k,\beta }}\bigg[W{W}^{\top }{e}^{(k+1){\beta }^{\top }W}-2\frac{\mathsf{E}[U{e}^{(k+1){\beta }^{\top }U}]}{M_{k,\beta }}{W}^{\top }{e}^{(k+1){\beta }^{\top }W}\\{} & \displaystyle \hspace{2em}-\bigg(\frac{\mathsf{E}[U{U}^{\top }{e}^{(k+1){\beta }^{\top }U}]}{M_{k,\beta }}-2\frac{\mathsf{E}[U{e}^{(k+1){\beta }^{\top }U}]\cdot \mathsf{E}[{U}^{\top }{e}^{(k+1){\beta }^{\top }U}]}{{M_{k,\beta }^{2}}}\bigg){e}^{(k+1){\beta }^{\top }W}\bigg].\end{array}\]
The matrix $P(W,t)={\sum _{k=0}^{\infty }}P_{k}(W,t)$ is a solution to the third equation if
Hereafter $\| Q\| $ is the Euclidean norm of a matrix Q. We have
The right-hand side of (8) is a sum of four series which can be bounded similarly based on condition (6). E.g., for the last of the four series we have:
(8)
\[ \begin{array}{r@{\hskip0pt}l}\displaystyle {\sum \limits_{k=0}^{\infty }}\mathsf{E}_{X}\big\| P_{k}(W,t)\big\| & \displaystyle \le {\sum \limits_{k=0}^{\infty }}\frac{{\varLambda }^{k}(t)}{k!}\bigg[\frac{\mathsf{E}_{X}[\hspace{2.5pt}\| W{\| }^{2}{e}^{(k+1){\beta }^{\top }W}\hspace{2.5pt}]}{M_{k,\beta }}\\{} & \displaystyle \hspace{1em}+2\frac{\mathsf{E}[\hspace{2.5pt}\| U\| {e}^{(k+1){\beta }^{\top }U}\hspace{2.5pt}]\cdot \mathsf{E}_{X}[\hspace{2.5pt}\| W\| {e}^{(k+1){\beta }^{\top }W}\hspace{2.5pt}]}{{M_{k,\beta }^{2}}}\\{} & \displaystyle \hspace{1em}+\frac{\mathsf{E}[\hspace{2.5pt}\| U{\| }^{2}{e}^{(k+1){\beta }^{\top }U}\hspace{2.5pt}]\cdot \mathsf{E}_{X}{e}^{(k+1){\beta }^{\top }W}}{{M_{k,\beta }^{2}}}\\{} & \displaystyle \hspace{1em}+2\frac{{(\mathsf{E}\| U\| {e}^{(k+1){\beta }^{\top }U})}^{2}\cdot \mathsf{E}_{X}{e}^{(k+1){\beta }^{\top }W}}{{M_{k,\beta }^{3}}}\bigg].\end{array}\]
\[\begin{array}{r@{\hskip0pt}l}\displaystyle {\big(\mathsf{E}\| U\| {e}^{\frac{1}{2}(k+1){\beta }^{\top }U}{e}^{\frac{1}{2}(k+1){\beta }^{\top }U}\big)}^{2}\hspace{2.5pt}& \displaystyle \le \mathsf{E}\| U{\| }^{2}{e}^{(k+1){\beta }^{\top }U}\cdot M_{k,\beta }\hspace{2.5pt},\\{} \displaystyle \mathsf{E}_{X}{e}^{(k+1){\beta }^{\top }W}& \displaystyle =M_{k,\beta }\cdot {e}^{(k+1){\beta }^{\top }X},\\{} \displaystyle {\sum \limits_{k=0}^{\infty }}\frac{{\varLambda }^{k}(t){(\mathsf{E}\| U\| {e}^{(k+1){\beta }^{\top }U})}^{2}\cdot \mathsf{E}_{X}{e}^{(k+1){\beta }^{\top }W}}{k!\hspace{2.5pt}{M_{k,\beta }^{3}}}& \displaystyle \le {\sum \limits_{k=0}^{\infty }}\frac{a_{k+1}(\beta ){\varLambda }^{k}(t){e}^{(k+1){\beta }^{\top }X}}{k!}<\infty .\end{array}\]
Theorem 3.
The condition of Theorem 2 is fulfilled in each of the following cases:
(a) the measurement error U is bounded,
(b) U is normally distributed with zero mean and variance-covariance matrix ${\sigma _{U}^{2}}I_{m}$, with $\sigma _{U}>0$, and
(c) U has independent components $U_{(i)}$ which are shifted Poisson random variables, i.e. $U_{(i)}=\tilde{U}_{(i)}-\mu _{i}$, where $\tilde{U}_{(i)}\sim Pois(\mu _{i})$, $i=1,\dots ,m$.
Proof.
(a) Let $\| U\| \le K$. Then
\[ \hspace{1em}\frac{\mathsf{E}\| U{\| }^{2}{e}^{(k+1){\beta }^{\top }U}}{M_{k,\beta }}\le {K}^{2},\]
and (6) holds true.(b) For a normally distributed vector U with components $U_{(i)}$, we have $\mathsf{E}{e}^{tU_{(i)}}=\exp (\frac{{t}^{2}{\sigma _{U}^{2}}}{2})$. Differentiation twice in t gives
\[ \mathsf{E}{U_{(i)}^{2}}{e}^{(k+1)\beta _{i}U_{(i)}}=\big(1+{(k+1)}^{2}{\beta _{i}^{2}}{\sigma _{U}^{2}}\big){\sigma _{U}^{2}}\exp \bigg(\frac{{(k+1)}^{2}{\beta _{i}^{2}}{\sigma _{U}^{2}}}{2}\bigg),\]
and
\[ \frac{\mathsf{E}{U_{(i)}^{2}}{e}^{(k+1){\beta }^{\top }U}}{M_{k,\beta }}=\big(1+{(k+1)}^{2}{\beta _{i}^{2}}{\sigma _{U}^{2}}\big){\sigma _{U}^{2}}.\]
Thus,
\[ \frac{\mathsf{E}\| U{\| }^{2}{e}^{(k+1){\beta }^{\top }U}}{M_{k,\beta }}={\sum \limits_{i=1}^{m}}\big(1+{(k+1)}^{2}{\beta _{i}^{2}}{\sigma _{U}^{2}}\big){\sigma _{U}^{2}}.\]
Then (6) holds true.(c) We have $M_{U_{(i)}}(t):=\mathsf{E}{e}^{tU_{(i)}}=\exp (\mu _{i}({e}^{t}-1)-\mu _{i}t)$. Differentiation twice in t gives
\[\begin{array}{r@{\hskip0pt}l}\displaystyle {M^{\prime\prime }_{U_{(i)}}}(t)& \displaystyle =\mathsf{E}{U_{(i)}^{2}}{e}^{U_{(i)}t}={\mu _{i}^{2}}{\big({e}^{t}-1\big)}^{2}M_{U_{(i)}}(t)+\mu _{i}{e}^{t}M_{U_{(i)}}(t),\\{} \displaystyle \frac{\mathsf{E}{U_{(i)}^{2}}{e}^{(k+1){\beta }^{\top }U}}{M_{k,\beta }}& \displaystyle ={\mu _{i}^{2}}{\big({e}^{(k+1)\beta _{i}}-1\big)}^{2}+\mu _{i}{e}^{(k+1)\beta _{i}}\le \text{const}\cdot {e}^{2(k+1)\cdot |\beta _{i}|},\end{array}\]
where the factor ‘const’ does not depend of k. Thus,
\[ \frac{\mathsf{E}\| U{\| }^{2}{e}^{(k+1){\beta }^{\top }U}}{M_{k,\beta }}\le \text{const}\cdot {\sum \limits_{i=1}^{m}}\hspace{2.5pt}{e}^{2(k+1)\cdot |\beta _{i}|},\]
and condition (6) holds. This completes the proof. □Now, we can construct estimators of $a(t)$, $b(t)$ and $p(t)$ for $t\in [0,\tau ]$. Take $\hat{\varLambda }(t):={\int _{0}^{t}}{\hat{\lambda }_{n}^{(2)}}(s)ds$ as a consistent estimator of $\varLambda (t)$, $t\in [0,\tau ]$. Indeed, the consistency of ${\hat{\lambda }_{n}^{(2)}}(\cdot )$ implies
a.s. as $n\to \infty $.
For any fixed $(\lambda ,\beta )\in {\varTheta }^{R}\hspace{2.5pt}$ and for all $t\in [0,\tau ]$, a sequence
converges to $b(t;\lambda ,\beta )$ a.s. due to SLLN. The sequence is equicontinuous a.s. on the compact set ${\varTheta }^{R}$, and the limiting function is continuous on ${\varTheta }^{R}$. The latter three statements ensure that the sequence converges to b uniformly on ${\varTheta }^{R}$. Thus,
\[ \hat{b}(t)=\frac{1}{n}{\sum \limits_{i=1}^{n}}B\big(W_{i};{\hat{\lambda }_{n}^{(2)}},{\hat{\beta }_{n}^{(2)}},\hat{\varLambda }\big)\to b(t;\lambda _{0},\beta _{0},\varLambda ),\hspace{1em}t\in [0,\tau ],\]
a.s. as $n\to \infty $.In a similar way for all $t\in [0,\tau ]$,
\[ \hat{a}(t)=\frac{1}{n}{\sum \limits_{i=1}^{n}}A\big(W_{i};{\hat{\lambda }_{n}^{(2)}},{\hat{\beta }_{n}^{(2)}},\hat{\varLambda }\big)\to a(t;\lambda _{0},\beta _{0},\varLambda )\]
a.s. and
\[ \hat{p}(t)=\frac{1}{n}{\sum \limits_{i=1}^{n}}P\big(W_{i};{\hat{\lambda }_{n}^{(2)}},{\hat{\beta }_{n}^{(2)}},\hat{\varLambda }\big)\to p(t;\lambda _{0},\beta _{0},\varLambda )\]
a.s. Then
\[ \hat{T}(t)\hat{K}(t)=\bigg(\hat{p}(t)-\frac{\hat{a}(t){\hat{a}}^{\top }(t)}{\hat{b}(t)}\bigg){\hat{\lambda }_{n}^{(2)}}(t)\]
is a consistent estimator of $T(t)K(t)$, $t\in [0,\tau ]$.Definition 3.
The Kaplan–Meier estimator of the survival function of censor C is defined as
\[ \hat{G}_{C}(u)=\left\{\begin{array}{l@{\hskip10.0pt}l}{\prod \limits_{j=1}^{n}}{(\frac{N(Y_{j})}{N(Y_{j})+1})}^{\tilde{\varDelta }_{j}I_{Y_{j}\le u}}\hspace{1em}& \text{if}\hspace{2.5pt}u\le Y_{(n)};\\{} 0,\hspace{0.2778em}\hspace{1em}& \text{otherwise},\end{array}\right.\]
where $\tilde{\varDelta }_{j}:=1-\varDelta _{j}$, $N(u):=\mathrm{\sharp }\{Y_{i}>u,\hspace{0.2778em}i=1,\dots ,n\}$, and $Y_{(n)}$ is the largest order statistic.We state the convergence of the Kaplan–Meier estimator. Remember that $Y=\min \{T,C\}$. Let $G_{Y}(t)$ be the survival function of Y.
In our model, the lifetime T has a continuous survival function, and if we assume that the same holds true for the censor C, then the first condition of Theorem 4 is satisfied. Next, it holds $G_{Y}(t)=G_{T}(t)G_{C}(t)$ and due to condition (v) for all small enough positive ε there exists $0<\delta <\frac{1}{2}$ such that
Therefore, the second condition holds as well, with $S=\tau -\varepsilon $.
Relation (9) is equivalent to the following: there exists a random variable $C_{S}(\omega )$ such that a.s. for all $n\ge 2$,
Let
We have
Due to the above-stated consistency of $\hat{T}(\cdot )\hat{K}(\cdot )$ and since $\hat{G}_{C}$ is bounded by 1, the first summand in (10) converges to zero a.s. as $n\to \infty $.
(10)
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \| \hat{M}-M\| & \displaystyle =\Bigg|\Bigg|{\int _{0}^{Y_{(n)}}}\big(\hat{T}(u)\hat{K}(u)\hat{G}_{C}(u)-T(u)K(u)G_{C}(u)\big)du+\\{} & \displaystyle \hspace{1em}+{\int _{Y_{(n)}}^{\tau }}T(u)K(u)G_{C}(u)du\Bigg|\Bigg|\\{} & \displaystyle \le \underset{0\le u\le \tau }{\sup }\big\| \hat{T}(u)\hat{K}(u)-T(u)K(u)\big\| {\int _{0}^{Y_{(n)}}}\hat{G}_{C}(u)du\\{} & \displaystyle \hspace{1em}+{\int _{0}^{Y_{(n)}}}\big\| T(u)K(u)\big\| \cdot \big|\hat{G}_{C}(u)-G_{C}(u)\big|du\\{} & \displaystyle \hspace{1em}+G_{C}(Y_{(n)}){\int _{Y_{(n)}}^{\tau }}\big\| T(u)K(u)\big\| du.\end{array}\]Consider the second summand. Let $S=\tau -\varepsilon $ for some fixed $\varepsilon >0$. There are two possibilities: $Y_{(n)}\le S$ and $S<Y_{(n)}\le \tau $. In the first case,
\[ {\int _{0}^{Y_{(n)}}}\big\| T(u)K(u)\big\| \cdot \big|\hat{G}_{C}(u)-G_{C}(u)\big|du\le \text{const}\cdot \underset{0\le u\le S}{\sup }\big|\hat{G}_{C}(u)-G_{C}(u)\big|.\]
In the second case,
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle {\int _{0}^{Y_{(n)}}}\big\| T(u)K(u)\big\| \cdot \big|\hat{G}_{C}(u)-G_{C}(u)\big|du\\{} & \displaystyle \hspace{1em}\le \text{const}\Big(\underset{0\le u\le S}{\sup }\big|\hat{G}_{C}(u)-G_{C}(u)\big|+{\int _{S}^{Y_{(n)}}}\big|\hat{G}_{C}(u)-G_{C}(u)\big|du\Big)\\{} & \displaystyle \hspace{1em}\le \text{const}\Big(\underset{0\le u\le S}{\sup }\big|\hat{G}_{C}(u)-G_{C}(u)\big|+Y_{(n)}-S\Big).\end{array}\]
It holds that $Y_{(n)}\to \tau \hspace{1em}\text{a.s.}\hspace{2.5pt}$ Utilizing Theorem 4, we first tend $n\to \infty $ and then $\varepsilon \to 0$ and obtain convergence of the second summand of (10) to 0 a.s. as $n\to \infty $.
The convergence of $Y_{(n)}$ yields the convergence of the third summand. Finally,
Because $\mathsf{E}\zeta _{i}=0$, it holds $\varSigma _{\beta }=4\cdot \mathsf{E}\zeta _{1}{\zeta _{1}^{\top }}$. Therefore, we take
and eventually ${\hat{M}}^{-1}\hat{\varSigma }_{\beta }{\hat{M}}^{-1}>0$. Convergences (5) and (11) yield
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \hat{\varSigma }_{\beta }& \displaystyle =\frac{4}{n}{\sum \limits_{i=1}^{n}}\hat{\zeta _{i}}{\hat{\zeta }_{i}^{\top }},\hspace{1em}\text{with}\\{} \displaystyle \hat{\zeta }_{i}& \displaystyle =-\frac{\varDelta _{i}\hat{a}(Y_{i})}{\hat{b}(Y_{i})}+\frac{\exp ({\hat{\beta }_{n}^{(2)T}}W_{i})}{M_{U}({\hat{\beta }_{n}^{(2)}})}{\int _{0}^{Y_{i}}}\hat{a}(u)\hat{K}(u)du+\frac{\partial q}{\partial \beta }\big(Y_{i},\varDelta _{i},W_{i},{\hat{\beta }_{n}^{(2)}},{\hat{\lambda }_{n}^{(2)}}\big),\end{array}\]
as an estimator of $\varSigma _{\beta }$. We have
\[ \hat{\varSigma }_{\beta }\to \varSigma _{\beta }\hspace{1em}\text{a.s. as}\hspace{1em}n\to \infty .\]
Then
(11)
\[ {\hat{M}}^{-1}\hat{\varSigma }_{\beta }{\hat{M}}^{-1}\to {M}^{-1}\varSigma _{\beta }{M}^{-1}\hspace{1em}\text{a.s.,}\hspace{2.5pt}\]
\[ \sqrt{n}{\big({\hat{M}}^{-1}\hat{\varSigma }_{\beta }{\hat{M}}^{-1}\big)}^{-1/2}\big({\hat{\beta }_{n}^{(2)}}-\beta _{0}\big)\stackrel{\text{d}}{\to }N(0,I_{m}).\]
Thus,
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle {\big\| \sqrt{n}{\big({\hat{M}}^{-1}\hat{\varSigma }_{\beta }{\hat{M}}^{-1}\big)}^{-1/2}\big({\hat{\beta }_{n}^{(2)}}-\beta _{0}\big)\big\| }^{2}\\{} & \displaystyle \hspace{1em}=n{\big({\hat{\beta }_{n}^{(2)}}-\beta _{0}\big)}^{\top }{\big({\hat{M}}^{-1}\hat{\varSigma }_{\beta }{\hat{M}}^{-1}\big)}^{-1}\big({\hat{\beta }_{n}^{(2)}}-\beta _{0}\big)\stackrel{\text{d}}{\to }{\chi _{m}^{2}}.\end{array}\]
Given a confidence probability $1-\alpha $, the asymptotic confidence ellipsoid for β is the set
\[ E_{n}=\bigg\{z\in {\mathbb{R}}^{m}\hspace{2.5pt}\big|\hspace{2.5pt}{\big(z-{\hat{\beta }_{n}^{(2)}}\big)}^{\top }{\big({\hat{M}}^{-1}\hat{\varSigma }_{\beta }{\hat{M}}^{-1}\big)}^{-1}\big(z-{\hat{\beta }_{n}^{(2)}}\big)\le \frac{1}{n}\big({\chi _{m}^{2}}\big)_{\alpha }\bigg\}.\]
Here $({\chi _{m}^{2}})_{\alpha }$ is the upper quantile of ${\chi _{m}^{2}}$ distribution.4 Confidence intervals for the baseline hazard rate
Theorem 1 implies the following statement.
Corollary 1.
Let $0<\varepsilon <\tau $. Assume that the censor C has a bounded pdf on $[0,\tau -\varepsilon ]$. Under conditions (i) – (x), for any Lipschitz continuous function f on $[0,\tau ]$ with support on $[0,\tau -\varepsilon ]$,
Here we set $\frac{f(\tau )}{G_{C}(\tau )}=0$. Notice that $\frac{1}{G_{C}}$ is Lipschitz continuous on $[0,\tau -\varepsilon ]$.
\[ \sqrt{n}{\int _{0}^{\tau -\varepsilon }}\big({\hat{\lambda }_{n}^{(2)}}-\lambda _{0}\big)(u)f(u)du\stackrel{\textit{d}}{\to }N\big(0,{\sigma _{\varphi }^{2}}(f)\big),\]
where ${\sigma _{\varphi }^{2}}(f)={\sigma _{\varphi }^{2}}$ with $\varphi =(\varphi _{\lambda },\varphi _{\beta })$, $\varphi _{\beta }=-{A}^{-1}m(\varphi _{\lambda })$ and $\varphi _{\lambda }$ is a unique solution in $C[0,\tau ]$ to the Fredholm integral equation
(12)
\[ \frac{\varphi _{\lambda }(u)}{K(u)}-{a}^{\top }(u){A}^{-1}m(\varphi _{\lambda })=\frac{f(u)}{G_{C}(u)},\hspace{1em}u\in [0,\tau ].\]We show that asymptotic variance ${\sigma _{\varphi }^{2}}$ is positive and construct its consistent estimator.
Definition 4.
A random variable ξ is called nonatomic if $\mathsf{P}(\xi =x_{0})=0$, for all $x_{0}\in \mathbb{R}.$
Lemma 2.
Suppose that assumptions of Corollary 1 are satisfied. Additionally assume the following:
Then ${\sigma _{\varphi }^{2}}(f)\ne 0$.
Proof.
We prove by contradiction. For brevity we drop zero index writing $\varphi _{\lambda }=\varphi _{\lambda _{0}}$, $\varphi _{\beta }=\varphi _{\beta _{0}}$ and omit arguments where there is no confusion. In particular, we write $M_{U}$ instead of $M_{U}(\beta _{0})$ and ${\sigma _{\varphi }^{2}}$ instead of ${\sigma _{\varphi }^{2}}(f)$.
Denote $\eta =\xi (C,0,W)$. From (4) we get
with
Suppose that ${\sigma _{\varphi }^{2}}=0$. This yields $\xi =0$ a.s. Then
It holds $\mathsf{P}(\varDelta =0)>0$ and according to (x), $C>0$ a.s. Thus, in order to get a contradiction it is enough to prove that
Since C and W are independent, it holds
\[ \mathsf{P}(\eta =0\hspace{2.5pt}|\hspace{2.5pt}C>0)=\mathsf{E}[\pi _{x}|_{x=C}\hspace{2.5pt}|\hspace{2.5pt}C>0],\]
where for $x\in (0,\tau ]$,
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \pi _{x}:& \displaystyle =\mathsf{P}\Bigg({\int _{0}^{x}}\big(\alpha _{W}\varphi _{\lambda }(u)+\gamma _{W}\lambda _{0}(u)\big)du=0\Bigg)\\{} & \displaystyle =\mathsf{P}\Bigg(M_{U}{\int _{0}^{x}}\varphi _{\lambda }(u)du+{\varphi _{\beta }^{\top }}\big(M_{U}\cdot W-\mathsf{E}\big(U{e}^{{\beta _{0}^{\top }}U}\big)\big){\int _{0}^{x}}\lambda _{0}(u)du=0\Bigg)\\{} & \displaystyle =\mathsf{P}\big(\hspace{2.5pt}{\varphi _{\beta }^{\top }}W=v_{x}\big).\end{array}\]
Here $v_{x}$ is a nonrandom real number. In the latter equality we use assumption (vii) to guarantee that $\hspace{2.5pt}\hspace{2.5pt}{\int _{0}^{x}}\lambda _{0}(u)du>0$.Further, $\varphi _{\beta }=-{A}^{-1}m(\varphi _{\lambda })\ne 0$ because according to (xi) $m(\varphi _{\lambda })\ne 0$. Using independence of X and U together with assumption (xii), we conclude that for all nonzero $z\in {\mathbb{R}}^{m}$, ${z}^{\top }W={z}^{\top }X+{z}^{\top }U$ is nonatomic. Then ${\varphi _{\beta }^{\top }}W$ is nonatomic as well and $\pi _{x}=0$.
Thus, $\mathsf{P}(\eta =0\hspace{2.5pt}|\hspace{2.5pt}C>0)=0$ which proves (13). Therefore, ${\sigma _{\varphi }^{2}}(f)\ne 0$. □
Now, we can construct an estimator for the asymptotic variance ${\sigma _{\varphi }^{2}}\hspace{2.5pt}$. Rewrite
\[ A=\mathsf{E}\Bigg[X{X}^{\top }{e}^{{\beta _{0}^{\top }}X}{\int _{0}^{Y}}\lambda _{0}(u)du\Bigg]={\int _{0}^{\tau }}\lambda _{0}(u)p(u)G_{C}(u)du.\]
Let
Results of Section 3 yield that $\hat{A}$ is a consistent estimator of A. Denote
\[ \hat{m}(\varphi _{\lambda })={\int _{0}^{Y(n)}}\varphi _{\lambda }(u)\hat{a}(u)\hat{G}_{C}(u)du\]
and define $\hat{\varphi }_{\lambda }$ as a solution in $L_{2}[0,\tau ]$ to the Fredholm integral equation with a degenerate kernel
\[ \frac{\varphi _{\lambda }(u)}{\hat{K}(u)}-{\hat{a}}^{\top }\hat{T}(u){\hat{A}}^{-1}\hat{m}(\varphi _{\lambda })=\frac{f(u)}{\hat{G}_{C}(u)}\hspace{2.5pt},\hspace{1em}u\in [0,\tau ].\]
Eventually, a solution is unique because the limiting equation (12) has a unique solution. The function $\hat{\varphi }_{\lambda }$ can be assumed right-continuous and it converges a.s. to $\varphi _{\lambda }$ from (12) in the supremum norm. Therefore,
is a consistent estimator of $\varphi _{\beta }$.Finally, we construct an estimator of ${\sigma _{\varphi }^{2}}$. Put
\[ {\hat{\sigma }_{\varphi }^{2}}=\frac{4}{n-1}{\sum \limits_{i=1}^{n}}{(\hat{\xi }_{i}-\bar{\xi })}^{2},\]
with
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \hat{\xi }_{i}& \displaystyle :=\frac{\varDelta _{i}\cdot \hat{\varphi }_{\lambda }(Y_{i})}{{\hat{\lambda }_{n}^{(2)}}(Y_{i})}-\frac{\exp ({\hat{\beta }_{n}^{(2)T}}W_{i})}{M_{U}({\hat{\beta }_{n}^{(2)}})}{\int _{0}^{Y_{i}}}\hat{\varphi }_{\lambda }(u)du+\varDelta _{i}\cdot {\hat{\varphi }_{\beta }^{\top }}W_{i}\\{} & \displaystyle \hspace{2.5pt}\hspace{1em}-{\hat{\varphi }_{\beta }^{\top }}\frac{M_{U}({\hat{\beta }_{n}^{(2)}})W_{i}-\mathsf{E}U{e}^{{\hat{\beta }_{n}^{(2)T}}U}}{M_{U}{({\hat{\beta }_{n}^{(2)}})}^{2}}\exp \big({\hat{\beta }_{n}^{(2)T}}W_{i}\big){\int _{0}^{Y_{i}}}{\hat{\lambda }_{n}^{(2)}}(u)du\end{array}\]
and
Lemma 2 and the consistency of auxiliary estimators yield the following consistency result.
Theorem 5.
Assume that condition (6) together with conditions (i) – (xii) are fulfilled and censor C has a continuous survival function. Then ${\sigma _{\varphi }^{2}}>0$ and
For fixed $\varepsilon >0$, consider an integral functional of the baseline hazard rate, $I_{f}(\lambda _{0})={\int _{0}^{\tau -\varepsilon }}\lambda _{0}(u)f(u)du$. Corollary 1 gives
\[ \frac{\sqrt{n}(I_{f}({\hat{\lambda }_{n}^{(2)}})-I_{f}(\lambda _{0}))}{\sigma _{\varphi }}\stackrel{\text{d}}{\to }N(0,1),\]
which together with (14) yields
\[ \frac{\sqrt{n}(I_{f}({\hat{\lambda }_{n}^{(2)}})-I_{f}(\lambda _{0}))}{\hat{\sigma }_{\varphi }}\stackrel{\text{d}}{\to }N(0,1).\]
Let
\[ I_{n}=\bigg[I_{f}\big({\hat{\lambda }_{n}^{(2)}}\big)-z_{\alpha /2}\frac{\hat{\sigma }_{\varphi }}{\sqrt{n}},I_{f}\big({\hat{\lambda }_{n}^{(2)}}\big)+z_{\alpha /2}\frac{\hat{\sigma }_{\varphi }}{\sqrt{n}}\bigg],\]
where $z_{\alpha /2}$ is the upper quantile of normal law. Then $I_{n}$ is the asymptotic confidence interval for $I_{f}(\lambda _{0})$.5 Computation of auxiliary estimators
In Section 3, we constructed estimators in a form of absolutely convergent series expansions. E.g., in Theorem 2 (a) we derived an expansion of such kind for $t\in [0,\tau ]$:
and
a.s. as $n\to \infty $. Now, we show that we can truncate the series.
Let $\{N_{n}:n\ge 1\}$ be a strictly increasing sequence of nonrandom positive integers. Fix t for the moment and omit this argument t. Consider the head of series $B(W_{i})$,
Fix $j\ge 1$, then for $n\ge j$ it holds:
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \frac{1}{n}{\sum \limits_{i=j}^{n}}\big|B(W_{i})-B_{N_{i}}(W_{i})\big|& \displaystyle \le \frac{1}{n}{\sum \limits_{i=j}^{n}}{\sum \limits_{k=N_{i}+1}^{\infty }}\big|B_{k}(W_{i})\big|\\{} & \displaystyle \le \frac{1}{n}{\sum \limits_{i=j}^{n}}{\sum \limits_{k=N_{j}+1}^{\infty }}\big|B_{k}(W_{i})\big|,\\{} \displaystyle \underset{n\to \infty }{\limsup }\frac{1}{n}{\sum \limits_{i=j}^{n}}\big|B(W_{i})-B_{N_{i}}(W_{i})\big|& \displaystyle \le \underset{n\to \infty }{\limsup }\frac{1}{n}{\sum \limits_{i=j}^{n}}{\sum \limits_{k=N_{j}+1}^{\infty }}\big|B_{k}(W_{i})\big|\\{} & \displaystyle =\mathsf{E}{\sum \limits_{k=N_{j}+1}^{\infty }}\big|B_{k}(W_{1})\big|.\end{array}\]
The latter expression tends to zero as $j\to \infty $. Therefore, almost surely
\[ \underset{j\to \infty }{\lim }\underset{n\to \infty }{\limsup }\frac{1}{n}{\sum \limits_{i=j}^{n}}\big|B(W_{i})-B_{N_{i}}(W_{i})\big|=0.\]
We conclude that
a.s. as $n\to \infty $. Moreover, with probability one the convergence is uniform in $(\lambda ,\beta )$ belonging to a compact set. Therefore, it is enough to truncate the series $B(W,t)$ by some large numbers, which makes feasible the computation of estimators from Section 3.6 Conclusion
At the end of Section 3, we constructed asymptotic confidence intervals for integral functionals of the baseline hazard rate $\lambda _{0}(\cdot )$, and at the end of Section 4, we constructed an asymptotic confidence region for the regression parameter β. We imposed some restrictions on the error distribution. In particular, we handled the following cases: (a) the measurement error is bounded, (b) it is normally distributed, and (c) it has independent components which are shifted Poisson random variables. Based on truncated series, we showed a way to compute auxiliary estimates which are used in construction of the confidence sets.
In future we intend to elaborate a method to construct confidence regions in case of heavy-tailed measurement errors.