The effect that weighted summands have on each other in approximations of $S={w_{1}}{S_{1}}+{w_{2}}{S_{2}}+\cdots +{w_{N}}{S_{N}}$ is investigated. Here, ${S_{i}}$’s are sums of integer-valued random variables, and ${w_{i}}$ denote weights, $i=1,\dots ,N$. Two cases are considered: the general case of independent random variables when their closeness is ensured by the matching of factorial moments and the case when the ${S_{i}}$ has the Markov Binomial distribution. The Kolmogorov metric is used to estimate the accuracy of approximation.
We investigate the pricing of cliquet options in a geometric Meixner model. The considered option is of monthly sum cap style while the underlying stock price model is driven by a pure-jump Meixner–Lévy process yielding Meixner distributed log-returns. In this setting, we infer semi-analytic expressions for the cliquet option price by using the probability distribution function of the driving Meixner–Lévy process and by an application of Fourier transform techniques. In an introductory section, we compile various facts on the Meixner distribution and the related class of Meixner–Lévy processes. We also propose a customized measure change preserving the Meixner distribution of any Meixner process.