Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 6, Issue 2 (2019)
  4. Convergence rates in the central limit t ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Convergence rates in the central limit theorem for weighted sums of Bernoulli random fields
Volume 6, Issue 2 (2019), pp. 251–267
Davide Giraudo  

Authors

 
Placeholder
https://doi.org/10.15559/18-VMSTA121
Pub. online: 21 December 2018      Type: Research Article      Open accessOpen Access

Received
20 December 2017
Revised
19 October 2018
Accepted
20 October 2018
Published
21 December 2018

Abstract

Moment inequalities for a class of functionals of i.i.d. random fields are proved. Then rates are derived in the central limit theorem for weighted sums of such randoms fields via an approximation by m-dependent random fields.

References

[1] 
Bentkus, V., Sunklodas, J.K.: On normal approximations to strongly mixing random fields. Publ. Math. (Debr.) 70(3-4), 253–270 (2007). MR2310650
[2] 
Berry, A.C.: The accuracy of the Gaussian approximation to the sum of independent variates. Trans. Am. Math. Soc. 49, 122–136 (1941). MR0003498. https://doi.org/10.2307/1990053
[3] 
Biermé, H., Durieu, O.: Invariance principles for self-similar set-indexed random fields. Trans. Am. Math. Soc. 366(11), 5963–5989 (2014). MR3256190. https://doi.org/10.1090/S0002-9947-2014-06135-7
[4] 
Bulinski, A.V.: On the convergence rates in the CLT for positively and negatively dependent random fields. In: Probability Theory and Mathematical Statistics (St. Petersburg, 1993), pp. 3–14. Gordon and Breach, Amsterdam (1996). MR1661688
[5] 
Bulinski, A., Kryzhanovskaya, N.: Convergence rate in CLT for vector-valued random fields with self-normalization. Probab. Math. Stat. 26(2), 261–281 (2006). MR2325308
[6] 
Bulinskii, A.V., Doukhan, P.: Vitesse de convergence dans le théorème de limite centrale pour des champs mélangeants satisfaisant des hypothèses de moment faibles. C. R. Acad. Sci. Paris Sér. I Math. 311(12), 801–805 (1990). MR1082637
[7] 
Chen, L.H.Y., Shao, Q.-M.: Normal approximation under local dependence. Ann. Probab. 32(3A), 1985–2028 (2004). MR2073183. https://doi.org/10.1214/009117904000000450
[8] 
El Machkouri, M., Ouchti, L.: Exact convergence rates in the central limit theorem for a class of martingales. Bernoulli 13(4), 981–999 (2007). MR2364223. https://doi.org/10.3150/07-BEJ6116
[9] 
El Machkouri, M.: Kernel density estimation for stationary random fields. ALEA Lat. Am. J. Probab. Math. Stat. 11(1), 259–279 (2014). MR3225977
[10] 
El Machkouri, M., Stoica, R.: Asymptotic normality of kernel estimates in a regression model for random fields. J. Nonparametr. Stat. 22(8), 955–971 (2010). MR2738877. https://doi.org/10.1080/10485250903505893
[11] 
El Machkouri, M., Volný, D., Wu, W.B.: A central limit theorem for stationary random fields. Stoch. Process. Appl. 123(1), 1–14 (2013). MR2988107. https://doi.org/10.1016/j.spa.2012.08.014
[12] 
Esseen, C.-G.: On the Liapounoff limit of error in the theory of probability. Ark. Mat. Astron. Fys. 28A(9), 19 (1942). MR0011909
[13] 
Jirak, M.: Berry-Esseen theorems under weak dependence. Ann. Probab. 44(3), 2024–2063 (2016). MR3502600. https://doi.org/10.1214/15-AOP1017
[14] 
Johnson, W.B., Schechtman, G., Zinn, J.: Best constants in moment inequalities for linear combinations of independent and exchangeable random variables. Ann. Probab. 13(1), 234–253 (1985). MR0770640
[15] 
Klicnarová, J., Volný, D., Wang, Y.: Limit theorems for weighted Bernoulli random fields under Hannan’s condition. Stoch. Process. Appl. 126(6), 1819–1838 (2016). MR3483738. https://doi.org/10.1016/j.spa.2015.12.006
[16] 
Liu, W., Xiao, H., Wu, W.B.: Probability and moment inequalities under dependence. Stat. Sin. 23(3), 1257–1272 (2013). MR3114713
[17] 
Merlevède, F., Peligrad, M.: Rosenthal-type inequalities for the maximum of partial sums of stationary processes and examples. Ann. Probab. 41(2), 914–960 (2013). MR3077530. https://doi.org/10.1214/11-AOP694
[18] 
Mielkaitis, E., Paulauskas, V.: Rates of convergence in the CLT for linear random fields. Lith. Math. J. 51(2), 233–250 (2011). MR2805741. https://doi.org/10.1007/s10986-011-9122-8
[19] 
Nakhapetyan, B.S., Petrosyan, A.N.: On the rate of convergence in the central limit theorem for martingale-difference random fields. Izv. Nats. Akad. Nauk Armenii Mat. 39(2), 59–68 (2004). MR2167826
[20] 
Pavlenko, D.A.: An estimate for the rate of convergence in the central limit theorem for a class of random fields. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 3, 85–87 (1993). MR1355526
[21] 
Peligrad, M., Utev, S., Wu, W.B.: A maximal ${\mathbb{L}_{p}}$-inequality for stationary sequences and its applications. Proc. Am. Math. Soc. 135(2), 541–550 (2007). MR2255301. https://doi.org/10.1090/S0002-9939-06-08488-7
[22] 
Rio, E.: Théorie Asymptotique des Processus Aléatoires Faiblement Dépendants. Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 31, p. 169. Springer, Berlin (2000). MR2117923
[23] 
Rio, E.: Moment inequalities for sums of dependent random variables under projective conditions. J. Theor. Probab. 22(1), 146–163 (2009). MR2472010. https://doi.org/10.1007/s10959-008-0155-9
[24] 
Rosenthal, H.P.: On the subspaces of ${L^{p}}$ $(p\mathrm{>}2)$ spanned by sequences of independent random variables. Isr. J. Math. 8, 273–303 (1970). MR0271721. https://doi.org/10.1007/BF02771562
[25] 
Shao, Q.M.: Maximal inequalities for partial sums of ρ-mixing sequences. Ann. Probab. 23(2), 948–965 (1995). MR1334179
[26] 
Truquet, L.: A moment inequality of the Marcinkiewicz-Zygmund type for some weakly dependent random fields. Stat. Probab. Lett. 80(21–22), 1673–1679 (2010). MR2684016. https://doi.org/10.1016/j.spl.2010.07.011
[27] 
Wu, W.B.: Nonlinear system theory: another look at dependence. Proc. Natl. Acad. Sci. USA 102(40), 14150–14154 (2005). MR2172215. https://doi.org/10.1073/pnas.0506715102
[28] 
Yang, W., Wang, X., Li, X., Hu, S.: Berry-Esséen bound of sample quantiles for ϕ-mixing random variables. J. Math. Anal. Appl. 388(1), 451–462 (2012). MR2869760. https://doi.org/10.1016/j.jmaa.2011.10.058

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2019 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Random fields moment inequalities central limit theorem

MSC2010
60F05 60G60

Funding
This research was supported by the grand SFB 823.

Metrics (since March 2018)
727

Article info
views

438

Full article
views

362

PDF
downloads

88

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy