A copula-based bivariate integer-valued autoregressive process with application        
        
    
        Volume 6, Issue 2 (2019), pp. 227–249
            
    
                    Pub. online: 12 March 2019
                    
        Type: Research Article
            
                
             Open Access
Open Access
        
            
    
                Received
21 August 2018
                                    21 August 2018
                Revised
12 December 2018
                                    12 December 2018
                Accepted
28 January 2019
                                    28 January 2019
                Published
12 March 2019
                    12 March 2019
Abstract
A bivariate integer-valued autoregressive process of order 1 (BINAR(1)) with copula-joint innovations is studied. Different parameter estimation methods are analyzed and compared via Monte Carlo simulations with emphasis on estimation of the copula dependence parameter. An empirical application on defaulted and non-defaulted loan data is carried out using different combinations of copula functions and marginal distribution functions covering the cases where both marginal distributions are from the same family, as well as the case where they are from different distribution families.
            References
 Al-Osh, M., Alzaid, A.: First-order integer-valued autoregressive (INAR(1)) process. J. Time Ser. Anal. 8, 261–275 (1987) MR0903755. https://doi.org/10.1111/j.1467-9892.1987.tb00438.x
 Barczy, M., Ispány, M., Pap, G., Scotto, M., Silva, M.E.: Innovational outliers in INAR(1) models. Commun. Stat., Theory Methods 39(18), 3343–3362 (2010) MR2747588. https://doi.org/10.1080/03610920903259831
 Freeland, R.K., McCabe, B.: Asymptotic properties of CLS estimators in the Poisson AR(1) model. Stat. Probab. Lett. 73(2), 147–153 (2005) MR2159250. https://doi.org/10.1016/j.spl.2005.03.006
 Genest, C., Nešlehová, J.: A primer on copulas for count data. ASTIN Bull. 37(2), 475–515 (2007) MR2422797. https://doi.org/10.2143/AST.37.2.2024077
 Joe, H.: Dependence Modeling with Copulas. Chapman & Hall/CRC Monographs on Statistics and Applied probability 134 (2015) MR3328438
 Karlis, D., Pedeli, X.: Flexible bivariate INAR(1) processes using copulas. Commun. Stat., Theory Methods 42, 723–740 (2013) MR3211946. https://doi.org/10.1080/03610926.2012.754466
 Kedem, B., Fokianos, K.: Regression Models for Time Series Analysis. Wiley-Interscience, New Jersey (2002) MR1933755. https://doi.org/10.1002/0471266981
 Latour, A.: The multivariate GINAR(p) process. Adv. Appl. Probab. 29(1), 228–248 (1997) MR1432938. https://doi.org/10.2307/1427868
 Latour, A.: Existence and stochastic structure of a non-negative integer-valued autoregressive process. J. Time Ser. Anal. 19(4), 439–455 (1998) MR1652193. https://doi.org/10.1111/1467-9892.00102
 Manstavičius, M., Leipus, R.: Bounds for the Clayton copula. Nonlinear Anal., Model. Control 22, 248–260 (2017) MR3608075. https://doi.org/10.15388/na.2017.2.7
 Nelsen, R.: An Introduction to Copulas, 2nd Edition. Springer (2006) MR2197664. https://doi.org/10.1007/s11229-005-3715-x
 Pawitan, Y.: In All Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford University Press, New York (2001) MR3668697. https://doi.org/10.1080/00031305.2016.1202140
 Pedeli, X., Karlis, D.: A bivariate INAR(1) process with application. Stat. Model., Int. J. 11(4), 325–349 (2011) MR2906704. https://doi.org/10.1177/1471082X1001100403
 Sklar, M.: Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris 8, 229–231 (1959) MR0125600
 
            