A copula-based bivariate integer-valued autoregressive process with application
Volume 6, Issue 2 (2019), pp. 227–249
Pub. online: 12 March 2019
Type: Research Article
Open Access
Received
21 August 2018
21 August 2018
Revised
12 December 2018
12 December 2018
Accepted
28 January 2019
28 January 2019
Published
12 March 2019
12 March 2019
Abstract
A bivariate integer-valued autoregressive process of order 1 (BINAR(1)) with copula-joint innovations is studied. Different parameter estimation methods are analyzed and compared via Monte Carlo simulations with emphasis on estimation of the copula dependence parameter. An empirical application on defaulted and non-defaulted loan data is carried out using different combinations of copula functions and marginal distribution functions covering the cases where both marginal distributions are from the same family, as well as the case where they are from different distribution families.
References
Al-Osh, M., Alzaid, A.: First-order integer-valued autoregressive (INAR(1)) process. J. Time Ser. Anal. 8, 261–275 (1987) MR0903755. https://doi.org/10.1111/j.1467-9892.1987.tb00438.x
Barczy, M., Ispány, M., Pap, G., Scotto, M., Silva, M.E.: Innovational outliers in INAR(1) models. Commun. Stat., Theory Methods 39(18), 3343–3362 (2010) MR2747588. https://doi.org/10.1080/03610920903259831
Freeland, R.K., McCabe, B.: Asymptotic properties of CLS estimators in the Poisson AR(1) model. Stat. Probab. Lett. 73(2), 147–153 (2005) MR2159250. https://doi.org/10.1016/j.spl.2005.03.006
Genest, C., Nešlehová, J.: A primer on copulas for count data. ASTIN Bull. 37(2), 475–515 (2007) MR2422797. https://doi.org/10.2143/AST.37.2.2024077
Joe, H.: Dependence Modeling with Copulas. Chapman & Hall/CRC Monographs on Statistics and Applied probability 134 (2015) MR3328438
Karlis, D., Pedeli, X.: Flexible bivariate INAR(1) processes using copulas. Commun. Stat., Theory Methods 42, 723–740 (2013) MR3211946. https://doi.org/10.1080/03610926.2012.754466
Kedem, B., Fokianos, K.: Regression Models for Time Series Analysis. Wiley-Interscience, New Jersey (2002) MR1933755. https://doi.org/10.1002/0471266981
Latour, A.: The multivariate GINAR(p) process. Adv. Appl. Probab. 29(1), 228–248 (1997) MR1432938. https://doi.org/10.2307/1427868
Latour, A.: Existence and stochastic structure of a non-negative integer-valued autoregressive process. J. Time Ser. Anal. 19(4), 439–455 (1998) MR1652193. https://doi.org/10.1111/1467-9892.00102
Manstavičius, M., Leipus, R.: Bounds for the Clayton copula. Nonlinear Anal., Model. Control 22, 248–260 (2017) MR3608075. https://doi.org/10.15388/na.2017.2.7
Nelsen, R.: An Introduction to Copulas, 2nd Edition. Springer (2006) MR2197664. https://doi.org/10.1007/s11229-005-3715-x
Pawitan, Y.: In All Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford University Press, New York (2001) MR3668697. https://doi.org/10.1080/00031305.2016.1202140
Pedeli, X., Karlis, D.: A bivariate INAR(1) process with application. Stat. Model., Int. J. 11(4), 325–349 (2011) MR2906704. https://doi.org/10.1177/1471082X1001100403
Sklar, M.: Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris 8, 229–231 (1959) MR0125600