The asymptotic error of chaos expansion approximations for stochastic differential equations
Volume 6, Issue 2 (2019), pp. 145–165
Pub. online: 23 April 2019
Type: Research Article
Open Access
Received
22 November 2018
22 November 2018
Revised
9 March 2019
9 March 2019
Accepted
9 March 2019
9 March 2019
Published
23 April 2019
23 April 2019
Abstract
In this paper we present a numerical scheme for stochastic differential equations based upon the Wiener chaos expansion. The approximation of a square integrable stochastic differential equation is obtained by cutting off the infinite chaos expansion in chaos order and in number of basis elements. We derive an explicit upper bound for the ${L^{2}}$ approximation error associated with our method. The proofs are based upon an application of Malliavin calculus.
References
Bally, V., Talay, D.: The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the distribution function. Probab. Theory Relat. Fields 104(1), 43–60 (1996). MR1367666. https://doi.org/10.1007/BF01303802
Bally, V., Talay, D.: The law of the Euler scheme for stochastic differential equations. II. Convergence rate of the density. Monte Carlo Methods Appl. 2(2), 93–128 (1996). MR1401964. https://doi.org/10.1515/mcma.1996.2.2.93
Benth, F.E., Gjerde, J.: Convergence rates for finite element approximations of stochastic partial differential equations. Stoch. Stoch. Rep. 63, 313–326 (1998). MR1658087. https://doi.org/10.1080/17442509808834153
Benth, F.E., Theting, T.G.: Some regularity results for the stochastic pressure equation of Wick-type. Stoch. Anal. Appl. 20, 1191–1223 (2002). MR1943795. https://doi.org/10.1081/SAP-120015830
Cameron, R.H., Martin, W.T.: The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals. Ann. Math. 48, 385–392 (1947). MR0020230. https://doi.org/10.2307/1969178
Cao, Y.: On convergence rate of Wiener-Itô expansion for generalized random variables. Stochastics 78, 179–187 (2006). MR2241915. https://doi.org/10.1080/17442500600768641
Chan, K.S., Stramer, O.: Weak consistency of the Euler method for numerically solving stochastic differential equations with discontinuous coefficients. Stoch. Process. Appl. 76(1), 33–44 (1998). MR1638015. https://doi.org/10.1016/S0304-4149(98)00020-9
Halidias, N., Kloeden, P.E.: A note on strong solution of stochastic differential equations with a discontinuous drift coefficient. J. Appl. Math. Stoch. Anal. (2006). MR2221001. https://doi.org/10.1155/JAMSA/2006/73257
Holden, H., Øksendal, B., Ubøe, J., Zhang, T.: Stochastic partial differential equations. Springer (2010). MR2571742. https://doi.org/10.1007/978-0-387-89488-1
Huschto, T., Sager, S.: Solving stochastic optimal control problems by a Wiener chaos approach. Vietnam J. Math. 42, 83–113 (2014). MR3167032. https://doi.org/10.1007/s10013-014-0060-8
Isobe, E., Sato, S.: Wiener-Hermite expansion of a process generated by an Itô stochastic differential equation. J. Appl. Probab. 20, 754–765 (1983). MR0720467. https://doi.org/10.2307/3213587
Jacod, J., Protter, P.: Asymptotic error distributions for the Euler method for stochastic differential equations. Ann. Probab. 26, 267–307 (1998). MR1617049. https://doi.org/10.1214/aop/1022855419
Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus. Spinger (2007). MR1121940. https://doi.org/10.1007/978-1-4612-0949-2
Kloeden, P.E., Platen, E.: Numerical solution of stochastic differential equations. Applications of Mathematics (New York), vol. 23. Springer, Berlin (1992). MR1214374. https://doi.org/10.1007/978-3-662-12616-5
Kurtz, T.G., Protter, P.: Wong-Zakai corrections, random evolutions and numerical schemes for SDEs. In: Stochastic Analysis, pp. 331–346. Academic Press, New York (1991). MR1119837. https://doi.org/10.1016/B978-0-12-481005-1.50023-5
Levajković, T., Seleši, D.: Chaos expansion methods for stochastic differential equations involving the Malliavin derivative-Part I. Publ. Inst. Math. 90, 65–84 (2011). MR2907094. https://doi.org/10.2298/PIM1104065L
Levajković, T., Seleši, D.: Chaos expansion methods for stochastic differential equations involving the Malliavin derivative-Part II. Publ. Inst. Math. 90, 85–98 (2011). MR2907095. https://doi.org/10.2298/PIM1104085L
Lototsky, S.V., Rozovskii, B.L.: Stochastic differential equations: A Wiener chaos approach. In: From stochastic calculus to mathematical finance, pp. 433–506. Springer, Berlin, Heidelberg (2006). MR2234286. https://doi.org/10.1007/978-3-540-30788-4_23
Lototsky, S.V., Mikulevičius, R., Rozovskii, B.L.: Nonlinear filtering revisited: A spectral approach. SIAM J. Control Optim. 35, 435–446 (1997). MR1436632. https://doi.org/10.1137/S0363012993248918
Luo, W.: Wiener chaos expansion and numerical solutions of stochastic partial differential equations. PhD thesis, Caltech (2006). MR3078549
Mikulevičius, R., Platen, E.: Rate of convergence of the Euler approximation for diffusion processes. Math. Nachr. 15, 233–239 (1991). MR1121206. https://doi.org/10.1002/mana.19911510114
Nualart, D.: The Malliavin calculus and related topics, 2nd edn. Springer, Berlin (2006). MR2200233
Veretennikov, A.Y., Krylov, N.V.: On explicit formulas for solutions of stochastic equations. Math. USSR Sb. 29, 239–256 (1976). https://doi.org/10.1070/SM1976v029n02ABEH003666
Wan, X., Rozovskii, B.L., Karniadakis, G.E.: A stochastic modeling methodology based on weighted Wiener chaos and Malliavin calculus. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 106, pp. 14189–14194 (2009). MR2539729. https://doi.org/10.1073/pnas.0902348106
Yan, L.: The Euler scheme with irregular coefficients. Ann. Probab. 30(3), 1172–1194 (2002). MR1920104. https://doi.org/10.1214/aop/1029867124