Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 6, Issue 3 (2019)
  4. Maximum likelihood estimation in the non ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Maximum likelihood estimation in the non-ergodic fractional Vasicek model
Volume 6, Issue 3 (2019), pp. 377–395
Stanislav Lohvinenko   Kostiantyn Ralchenko ORCID icon link to view author Kostiantyn Ralchenko details  

Authors

 
Placeholder
https://doi.org/10.15559/19-VMSTA140
Pub. online: 23 September 2019      Type: Research Article      Open accessOpen Access

Received
27 May 2019
Revised
7 August 2019
Accepted
5 September 2019
Published
23 September 2019

Abstract

We investigate the fractional Vasicek model described by the stochastic differential equation $d{X_{t}}=(\alpha -\beta {X_{t}})\hspace{0.1667em}dt+\gamma \hspace{0.1667em}d{B_{t}^{H}}$, ${X_{0}}={x_{0}}$, driven by the fractional Brownian motion ${B^{H}}$ with the known Hurst parameter $H\in (1/2,1)$. We study the maximum likelihood estimators for unknown parameters α and β in the non-ergodic case (when $\beta <0$) for arbitrary ${x_{0}}\in \mathbb{R}$, generalizing the result of Tanaka, Xiao and Yu (2019) for particular ${x_{0}}=\alpha /\beta $, derive their asymptotic distributions and prove their asymptotic independence.

References

[1] 
Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, Inc., New York (1992). MR1225604
[2] 
Anderson, T.W.: On asymptotic distributions of estimates of parameters of stochastic difference equations. Ann. Math. Stat. 30, 676–687 (1959). MR107347
[3] 
Belfadli, R., Es-Sebaiy, K., Ouknine, Y.: Parameter estimation for fractional Ornstein–Uhlenbeck processes: non-ergodic case. Front. Chem. Sci. Eng. 1(1), 1–16 (2011)
[4] 
Bercu, B., Coutin, L., Savy, N.: Sharp large deviations for the fractional Ornstein–Uhlenbeck process. Theory Probab. Appl. 55(4), 575–610 (2011). MR2859161
[5] 
Berzin, C., Latour, A., León, J.R.: Inference on the Hurst Parameter and the Variance of Diffusions Driven by Fractional Brownian Motion. Lecture Notes in Statistics, vol. 216. Springer, Cham (2014). MR3289986
[6] 
Bishwal, J.P.N.: Minimum contrast estimation in fractional Ornstein-Uhlenbeck process: Continuous and discrete sampling. Fract. Calc. Appl. Anal. 14, 375–410 (2011). MR2837637
[7] 
Cheridito, P., Kawaguchi, H., Makoto, M.: Fractional Ornstein–Uhlenbeck processes. Electron. J. Probab. 8, 1–14 (2003). MR1961165
[8] 
Chronopoulou, A., Viens, F.G.: Estimation and pricing under long-memory stochastic volatility. Ann. Finance 8(2–3), 379–403 (2012). MR2922802
[9] 
Corlay, S., Lebovits, J., Véhel, J.L.: Multifractional stochastic volatility models. Math. Finance 24(2), 364–402 (2014). MR3274947
[10] 
Craig, C.C.: The frequency of function of $y/x$. Ann. of Math. (2) 30(1–4), 471–486 (1928/29). MR1502897
[11] 
Feigin, P.D.: Maximum likelihood estimation for continuous-time stochastic processes. Adv. Appl. Probab. 8(4), 712–736 (1976). MR0426342
[12] 
Fink, H., Klüppelberg, C., Zähle, M.: Conditional distributions of processes related to fractional Brownian motion. J. Appl. Probab. 50(1), 166–183 (2013). MR3076779
[13] 
Hao, R., Liu, Y., Wang, S.: Pricing credit default swap under fractional Vasicek interest rate model. J. Math. Finance 4(1), 10–20 (2014)
[14] 
Hu, Y., Nualart, D.: Parameter estimation for fractional Ornstein–Uhlenbeck processes. Stat. Probab. Lett. 80(11–12), 1030–1038 (2010). MR2638974
[15] 
Hu, Y., Song, J.: Parameter estimation for fractional Ornstein–Uhlenbeck processes with discrete observations. In: Malliavin Calculus and Stochastic Analysis. A Festschrift in Honor of David Nualart. Springer Proc. Math. Stat., vol. 34, pp. 427–442. Springer, New York (2013). MR3070455
[16] 
Hu, Y., Nualart, D., Zhou, H.: Parameter estimation for fractional Ornstein–Uhlenbeck processes of general Hurst parameter. Stat. Inference Stoch. Process. 22(1), 111–142 (2019). MR3918739
[17] 
Kleptsyna, M.L., Le Breton, A.: Statistical analysis of the fractional Ornstein–Uhlenbeck type process. Stat. Inference Stoch. Process. 5(3), 229–248 (2002). MR1943832
[18] 
Kleptsyna, M.L., Le Breton, A., Roubaud, M.-C.: Parameter estimation and optimal filtering for fractional type stochastic systems. Stat. Inference Stoch. Process. 3(1–2), 173–182 (2000). MR1819294
[19] 
Kozachenko, Y., Melnikov, A., Mishura, Y.: On drift parameter estimation in models with fractional Brownian motion. Statistics 49(1), 35–62 (2015). MR3304366
[20] 
Kubilius, K., Mishura, Y., Ralchenko, K.: Parameter Estimation in Fractional Diffusion Models. Bocconi & Springer Series, vol. 8. Springer (2017). MR3304366
[21] 
Kubilius, K., Mishura, Y., Ralchenko, K., Seleznjev, O.: Consistency of the drift parameter estimator for the discretized fractional Ornstein–Uhlenbeck process with Hurst index $H\in (0,\frac{1}{2})$. Electron. J. Stat. 9(2), 1799–1825 (2015). MR3391120
[22] 
Kukush, A., Mishura, Y., Ralchenko, K.: Hypothesis testing of the drift parameter sign for fractional Ornstein–Uhlenbeck process. Electron. J. Stat. 11(1), 385–400 (2017). MR3608678
[23] 
Kutoyants, Y.A.: Statistical Inference for Ergodic Diffusion Processes. Springer Series in Statistics, p. 481. Springer (2004). MR2144185
[24] 
Liptser, R.S., Shiryayev, A.N.: Theory of Martingales vol. 49. Kluwer Academic Publishers Group, Dordrecht (1989). MR1022664
[25] 
Lohvinenko, S., Ralchenko, K.: Maximum likelihood estimation in the fractional Vasicek model. Lith. J. Stat. 56(1), 77–87 (2017)
[26] 
Lohvinenko, S., Ralchenko, K.: Asymptotic distribution of maximum likelihood estimator in fractional Vasicek model. Theory Probab. Math. Stat. 99, 134–151 (2018). MR3908663
[27] 
Lohvinenko, S., Ralchenko, K., Zhuchenko, O.: Asymptotic properties of parameter estimators in fractional Vasicek model. Lith. J. Stat. 55(1), 102–111 (2016)
[28] 
Mishura, Y., Ralchenko, K.: Drift parameter estimation in the models involving fractional Brownian motion. In: Modern Problems of Stochastic Analysis and Statistics. Springer Proc. Math. Stat., vol. 208, pp. 237–268. Springer, Cham (2017). MR3747669
[29] 
Oldham, K., Myland, J., Spanier, J.: An Atlas of Functions, 2nd edn. Springer (2009). MR2466333
[30] 
Song, L., Li, K.: Pricing option with stochastic interest rates and transaction costs in fractional Brownian markets. Discrete Dyn. Nat. Soc., 7056734-8 (2018). MR3842704
[31] 
Tanaka, K.: Distributions of the maximum likelihood and minimum contrast estimators associated with the fractional Ornstein–Uhlenbeck process. Stat. Inference Stoch. Process. 16(3), 173–192 (2013). MR3123562
[32] 
Tanaka, K.: Maximum likelihood estimation for the non-ergodic fractional Ornstein–Uhlenbeck process. Stat. Inference Stoch. Process. 18(3), 315–332 (2015). MR3395610
[33] 
Tanaka, K., Xiao, W., Yu, J.: Maximum likelihood estimation for the fractional Vasicek model. Research Collection School Of Economics, Paper No. 08-2019, 1–31 (2019)
[34] 
Vasicek, O.: An equilibrium characterization of the term structure. J. Financ. Econ. 5(2), 177–188 (1977)
[35] 
Wang, X., Yu, J.: Limit theory for an explosive autoregressive process. Econ. Lett. 126, 176–180 (2015). MR3298417
[36] 
Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1995). MR1349110
[37] 
White, J.S.: The limiting distribution of the serial correlation coefficient in the explosive case. Ann. Math. Stat. 29, 1188–1197 (1958). MR100952
[38] 
Xiao, W., Yu, J.: Asymptotic theory for estimating drift parameters in the fractional Vasicek model. Econom. Theory 35(1), 198–231 (2019). MR3904176
[39] 
Xiao, W., Yu, J.: Asymptotic theory for rough fractional Vasicek models. Econ. Lett. 177, 26–29 (2019). MR3904332
[40] 
Xiao, W., Zhang, W., Zhang, X., Chen, X.: The valuation of equity warrants under the fractional Vasicek process of the short-term interest rate. Physica A 394, 320–337 (2014). MR3123524

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2019 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Fractional Brownian motion fractional Vasicek model maximum likelihood estimation moment generating function asymptotic distribution non-ergodic process

MSC2010
60G22 62F10 62F12

Funding
The second author acknowledges that the present research is carried through within the frame and support of the ToppForsk project nr. 274410 of the Research Council of Norway with title STORM: Stochastics for Time-Space Risk Models.

Metrics
since March 2018
970

Article info
views

479

Full article
views

482

PDF
downloads

174

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy