Maximum likelihood estimation in the non-ergodic fractional Vasicek model
Volume 6, Issue 3 (2019), pp. 377–395
Pub. online: 23 September 2019
Type: Research Article
Open Access
Received
27 May 2019
27 May 2019
Revised
7 August 2019
7 August 2019
Accepted
5 September 2019
5 September 2019
Published
23 September 2019
23 September 2019
Abstract
We investigate the fractional Vasicek model described by the stochastic differential equation $d{X_{t}}=(\alpha -\beta {X_{t}})\hspace{0.1667em}dt+\gamma \hspace{0.1667em}d{B_{t}^{H}}$, ${X_{0}}={x_{0}}$, driven by the fractional Brownian motion ${B^{H}}$ with the known Hurst parameter $H\in (1/2,1)$. We study the maximum likelihood estimators for unknown parameters α and β in the non-ergodic case (when $\beta <0$) for arbitrary ${x_{0}}\in \mathbb{R}$, generalizing the result of Tanaka, Xiao and Yu (2019) for particular ${x_{0}}=\alpha /\beta $, derive their asymptotic distributions and prove their asymptotic independence.
References
Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, Inc., New York (1992). MR1225604
Anderson, T.W.: On asymptotic distributions of estimates of parameters of stochastic difference equations. Ann. Math. Stat. 30, 676–687 (1959). MR107347
Bercu, B., Coutin, L., Savy, N.: Sharp large deviations for the fractional Ornstein–Uhlenbeck process. Theory Probab. Appl. 55(4), 575–610 (2011). MR2859161
Berzin, C., Latour, A., León, J.R.: Inference on the Hurst Parameter and the Variance of Diffusions Driven by Fractional Brownian Motion. Lecture Notes in Statistics, vol. 216. Springer, Cham (2014). MR3289986
Bishwal, J.P.N.: Minimum contrast estimation in fractional Ornstein-Uhlenbeck process: Continuous and discrete sampling. Fract. Calc. Appl. Anal. 14, 375–410 (2011). MR2837637
Cheridito, P., Kawaguchi, H., Makoto, M.: Fractional Ornstein–Uhlenbeck processes. Electron. J. Probab. 8, 1–14 (2003). MR1961165
Chronopoulou, A., Viens, F.G.: Estimation and pricing under long-memory stochastic volatility. Ann. Finance 8(2–3), 379–403 (2012). MR2922802
Corlay, S., Lebovits, J., Véhel, J.L.: Multifractional stochastic volatility models. Math. Finance 24(2), 364–402 (2014). MR3274947
Craig, C.C.: The frequency of function of $y/x$. Ann. of Math. (2) 30(1–4), 471–486 (1928/29). MR1502897
Feigin, P.D.: Maximum likelihood estimation for continuous-time stochastic processes. Adv. Appl. Probab. 8(4), 712–736 (1976). MR0426342
Fink, H., Klüppelberg, C., Zähle, M.: Conditional distributions of processes related to fractional Brownian motion. J. Appl. Probab. 50(1), 166–183 (2013). MR3076779
Hu, Y., Nualart, D.: Parameter estimation for fractional Ornstein–Uhlenbeck processes. Stat. Probab. Lett. 80(11–12), 1030–1038 (2010). MR2638974
Hu, Y., Song, J.: Parameter estimation for fractional Ornstein–Uhlenbeck processes with discrete observations. In: Malliavin Calculus and Stochastic Analysis. A Festschrift in Honor of David Nualart. Springer Proc. Math. Stat., vol. 34, pp. 427–442. Springer, New York (2013). MR3070455
Hu, Y., Nualart, D., Zhou, H.: Parameter estimation for fractional Ornstein–Uhlenbeck processes of general Hurst parameter. Stat. Inference Stoch. Process. 22(1), 111–142 (2019). MR3918739
Kleptsyna, M.L., Le Breton, A.: Statistical analysis of the fractional Ornstein–Uhlenbeck type process. Stat. Inference Stoch. Process. 5(3), 229–248 (2002). MR1943832
Kleptsyna, M.L., Le Breton, A., Roubaud, M.-C.: Parameter estimation and optimal filtering for fractional type stochastic systems. Stat. Inference Stoch. Process. 3(1–2), 173–182 (2000). MR1819294
Kozachenko, Y., Melnikov, A., Mishura, Y.: On drift parameter estimation in models with fractional Brownian motion. Statistics 49(1), 35–62 (2015). MR3304366
Kubilius, K., Mishura, Y., Ralchenko, K.: Parameter Estimation in Fractional Diffusion Models. Bocconi & Springer Series, vol. 8. Springer (2017). MR3304366
Kubilius, K., Mishura, Y., Ralchenko, K., Seleznjev, O.: Consistency of the drift parameter estimator for the discretized fractional Ornstein–Uhlenbeck process with Hurst index $H\in (0,\frac{1}{2})$. Electron. J. Stat. 9(2), 1799–1825 (2015). MR3391120
Kukush, A., Mishura, Y., Ralchenko, K.: Hypothesis testing of the drift parameter sign for fractional Ornstein–Uhlenbeck process. Electron. J. Stat. 11(1), 385–400 (2017). MR3608678
Kutoyants, Y.A.: Statistical Inference for Ergodic Diffusion Processes. Springer Series in Statistics, p. 481. Springer (2004). MR2144185
Liptser, R.S., Shiryayev, A.N.: Theory of Martingales vol. 49. Kluwer Academic Publishers Group, Dordrecht (1989). MR1022664
Lohvinenko, S., Ralchenko, K.: Asymptotic distribution of maximum likelihood estimator in fractional Vasicek model. Theory Probab. Math. Stat. 99, 134–151 (2018). MR3908663
Mishura, Y., Ralchenko, K.: Drift parameter estimation in the models involving fractional Brownian motion. In: Modern Problems of Stochastic Analysis and Statistics. Springer Proc. Math. Stat., vol. 208, pp. 237–268. Springer, Cham (2017). MR3747669
Oldham, K., Myland, J., Spanier, J.: An Atlas of Functions, 2nd edn. Springer (2009). MR2466333
Song, L., Li, K.: Pricing option with stochastic interest rates and transaction costs in fractional Brownian markets. Discrete Dyn. Nat. Soc., 7056734-8 (2018). MR3842704
Tanaka, K.: Distributions of the maximum likelihood and minimum contrast estimators associated with the fractional Ornstein–Uhlenbeck process. Stat. Inference Stoch. Process. 16(3), 173–192 (2013). MR3123562
Tanaka, K.: Maximum likelihood estimation for the non-ergodic fractional Ornstein–Uhlenbeck process. Stat. Inference Stoch. Process. 18(3), 315–332 (2015). MR3395610
Wang, X., Yu, J.: Limit theory for an explosive autoregressive process. Econ. Lett. 126, 176–180 (2015). MR3298417
Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1995). MR1349110
White, J.S.: The limiting distribution of the serial correlation coefficient in the explosive case. Ann. Math. Stat. 29, 1188–1197 (1958). MR100952
Xiao, W., Yu, J.: Asymptotic theory for estimating drift parameters in the fractional Vasicek model. Econom. Theory 35(1), 198–231 (2019). MR3904176
Xiao, W., Yu, J.: Asymptotic theory for rough fractional Vasicek models. Econ. Lett. 177, 26–29 (2019). MR3904332
Xiao, W., Zhang, W., Zhang, X., Chen, X.: The valuation of equity warrants under the fractional Vasicek process of the short-term interest rate. Physica A 394, 320–337 (2014). MR3123524