Pathwise asymptotics for Volterra processes conditioned to a noisy version of the Brownian motion
Volume 7, Issue 1 (2020), pp. 17–41
Pub. online: 27 February 2020
Type: Research Article
Open Access
Received
30 July 2019
30 July 2019
Revised
30 November 2019
30 November 2019
Accepted
10 February 2020
10 February 2020
Published
27 February 2020
27 February 2020
Abstract
In this paper we investigate a problem of large deviations for continuous Volterra processes under the influence of model disturbances. More precisely, we study the behavior, in the near future after T, of a Volterra process driven by a Brownian motion in a case where the Brownian motion is not directly observable, but only a noisy version is observed or some linear functionals of the noisy version are observed. Some examples are discussed in both cases.
References
Azencott, R.: Grande Déviations et applications. In: École d’été de probabilités de St. Flour VIII. L.N.M., vol. 774. Springer, Berlin/Heidelberg/New York (1980). MR0590626
Azmoodeh, E., Sottinen, T., Viitasaari, L., Yazigi, A.: Necessary and sufficient conditions for Hölder continuity of Gaussian processes. Stat. Probab. Lett. 94, 230–235 (2014). MR3257384. https://doi.org/10.1016/j.spl.2014.07.030
Berlinet, A., Thomas-Agnan, C.: Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer Academic Publishers, Norwell (2004). MR2239907. https://doi.org/10.1007/978-1-4419-9096-9
Caramellino, L., Pacchiarotti, B.: Large deviation estimates of the crossing probability for pinned Gaussian processes. Adv. Appl. Probab. 40, 424–453 (2008). MR2431304. https://doi.org/10.1239/aap/1214950211
Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Jones and Bartlett, Boston, MA (1998). MR1202429
Deuschel, J.D., Stroock, D.W.: Large Deviations. Academic Press, Boston, MA (1989). MR0997938
Dudley, R.M.: The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. Funct. Anal. 1, 290–330 (1967). MR0220340. https://doi.org/10.1016/0022-1236(67)90017-1
Dudley, R.M.: Sample functions of the Gaussian process. Ann. Probab. 1(1), 66–103 (1973). MR0346884. https://doi.org/10.1214/aop/1176997026
Giorgi, F., Pacchiarotti, B.: Large deviations for conditional Volterra processes. Stoch. Anal. Appl. 35(2), 191–210 (2017). MR3597612. https://doi.org/10.1080/07362994.2016.1237291
Hida, T., Hitsuda, M.: Gaussian Processes. AMS Translations (1993). MR1216518
La Gatta, T.: Continuous disintegrations of Gaussian processes. Theory Probab. Appl. 57(1), 151–162 (2013). MR3201645. https://doi.org/10.1137/S0040585X9798587X
Macci, C., Pacchiarotti, B.: Exponential tightness for Gaussian processes with applications to some sequences of weighted means. Stochastics 89(2), 469–484 (2017). MR3590430. https://doi.org/10.1080/17442508.2016.1248968
Pacchiarotti, B.: Large deviations for generalized conditioned Gaussian processes and their bridges. Probab. Math. Stat. 39(1), 159–181 (2019). MR3964390. https://doi.org/10.19195/0208-4147.39.1.11
Pfanzagl, J.: On the existence of regular conditional probabilities. Z. Wahrscheinlichkeitstheor. Verw. Geb. 11, 244–256 (1969). MR0248892. https://doi.org/10.1007/BF00536383
Shiryaev, A.: Probability, 2nd edn. Graduate Texts in Mathematics, vol. 95. Springer, New York (1996). MR1368405. https://doi.org/10.1007/978-1-4757-2539-1
Sottinen, T., Viitasaari, L.: Prediction law of mixed Gaussian Volterra processes. Stat. Probab. Lett. 156, 108594 (2020). MR3997195. https://doi.org/10.1016/j.spl.2019.108594
Sottinen, T., Yazigi, A.: Generalized Gaussian bridges. Stoch. Process. Appl. 124(9), 3084–3105 (2014). MR3217434. https://doi.org/10.1016/j.spa.2014.04.002
Yazigi, A.: Representation of self-similar Gaussian processes. Stat. Probab. Lett. 99, 94–100 (2015). MR3321501. https://doi.org/10.1016/j.spl.2015.01.012