Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 7, Issue 1 (2020)
  4. Pathwise asymptotics for Volterra proces ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

Pathwise asymptotics for Volterra processes conditioned to a noisy version of the Brownian motion
Volume 7, Issue 1 (2020), pp. 17–41
Barbara Pacchiarotti  

Authors

 
Placeholder
https://doi.org/10.15559/20-VMSTA149
Pub. online: 27 February 2020      Type: Research Article      Open accessOpen Access

Received
30 July 2019
Revised
30 November 2019
Accepted
10 February 2020
Published
27 February 2020

Abstract

In this paper we investigate a problem of large deviations for continuous Volterra processes under the influence of model disturbances. More precisely, we study the behavior, in the near future after T, of a Volterra process driven by a Brownian motion in a case where the Brownian motion is not directly observable, but only a noisy version is observed or some linear functionals of the noisy version are observed. Some examples are discussed in both cases.

References

[1] 
Azencott, R.: Grande Déviations et applications. In: École d’été de probabilités de St. Flour VIII. L.N.M., vol. 774. Springer, Berlin/Heidelberg/New York (1980). MR0590626
[2] 
Azmoodeh, E., Sottinen, T., Viitasaari, L., Yazigi, A.: Necessary and sufficient conditions for Hölder continuity of Gaussian processes. Stat. Probab. Lett. 94, 230–235 (2014). MR3257384. https://doi.org/10.1016/j.spl.2014.07.030
[3] 
Berlinet, A., Thomas-Agnan, C.: Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer Academic Publishers, Norwell (2004). MR2239907. https://doi.org/10.1007/978-1-4419-9096-9
[4] 
Caramellino, L., Pacchiarotti, B.: Large deviation estimates of the crossing probability for pinned Gaussian processes. Adv. Appl. Probab. 40, 424–453 (2008). MR2431304. https://doi.org/10.1239/aap/1214950211
[5] 
Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Jones and Bartlett, Boston, MA (1998). MR1202429
[6] 
Deuschel, J.D., Stroock, D.W.: Large Deviations. Academic Press, Boston, MA (1989). MR0997938
[7] 
Dudley, R.M.: The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. Funct. Anal. 1, 290–330 (1967). MR0220340. https://doi.org/10.1016/0022-1236(67)90017-1
[8] 
Dudley, R.M.: Sample functions of the Gaussian process. Ann. Probab. 1(1), 66–103 (1973). MR0346884. https://doi.org/10.1214/aop/1176997026
[9] 
Giorgi, F., Pacchiarotti, B.: Large deviations for conditional Volterra processes. Stoch. Anal. Appl. 35(2), 191–210 (2017). MR3597612. https://doi.org/10.1080/07362994.2016.1237291
[10] 
Hida, T., Hitsuda, M.: Gaussian Processes. AMS Translations (1993). MR1216518
[11] 
La Gatta, T.: Continuous disintegrations of Gaussian processes. Theory Probab. Appl. 57(1), 151–162 (2013). MR3201645. https://doi.org/10.1137/S0040585X9798587X
[12] 
Macci, C., Pacchiarotti, B.: Exponential tightness for Gaussian processes with applications to some sequences of weighted means. Stochastics 89(2), 469–484 (2017). MR3590430. https://doi.org/10.1080/17442508.2016.1248968
[13] 
Pacchiarotti, B.: Large deviations for generalized conditioned Gaussian processes and their bridges. Probab. Math. Stat. 39(1), 159–181 (2019). MR3964390. https://doi.org/10.19195/0208-4147.39.1.11
[14] 
Pfanzagl, J.: On the existence of regular conditional probabilities. Z. Wahrscheinlichkeitstheor. Verw. Geb. 11, 244–256 (1969). MR0248892. https://doi.org/10.1007/BF00536383
[15] 
Shiryaev, A.: Probability, 2nd edn. Graduate Texts in Mathematics, vol. 95. Springer, New York (1996). MR1368405. https://doi.org/10.1007/978-1-4757-2539-1
[16] 
Sottinen, T., Viitasaari, L.: Prediction law of mixed Gaussian Volterra processes. Stat. Probab. Lett. 156, 108594 (2020). MR3997195. https://doi.org/10.1016/j.spl.2019.108594
[17] 
Sottinen, T., Yazigi, A.: Generalized Gaussian bridges. Stoch. Process. Appl. 124(9), 3084–3105 (2014). MR3217434. https://doi.org/10.1016/j.spa.2014.04.002
[18] 
Yazigi, A.: Representation of self-similar Gaussian processes. Stat. Probab. Lett. 99, 94–100 (2015). MR3321501. https://doi.org/10.1016/j.spl.2015.01.012

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2020 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Large deviations Volterra type Gaussian processes conditional processes

MSC2010
60F10 60G15 60G22

Funding
The author acknowledges the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006.

Metrics
since March 2018
568

Article info
views

338

Full article
views

375

PDF
downloads

152

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy