Geometric branching reproduction Markov processes
Volume 7, Issue 4 (2020), pp. 357–378
Pub. online: 30 September 2020
Type: Research Article
Open Access
Received
7 June 2020
7 June 2020
Revised
20 September 2020
20 September 2020
Accepted
20 September 2020
20 September 2020
Published
30 September 2020
30 September 2020
Abstract
We present a model of a continuous-time Markov branching process with the infinitesimal generating function defined by the geometric probability distribution. It is proved that the solution of the backward Kolmogorov equation is expressed by the composition of special functions – Wright function in the subcritical case and Lambert-W function in the critical case. We found the explicit form of conditional limit distribution in the subcritical branching reproduction. In the critical case, the extinction probability and probability mass function are expressed as a series containing Bell polynomial, Stirling numbers, and Lah numbers.
References
Athreya, K.B., Ney, P.E.: Branching Processes. Springer, New York (1972). MR0373040
Brito, P., Fabiao, F., Staubyn, A.: Euler, Lambert, and the Lambert W-function today. Math. Sci. 33, 127–133 (2008). MR2474739
Consul, P.C., Famoye, F.: Lagrangian Probability Distributions. Birkhäuser, Boston (2006). MR2209108
Corless, R.M., Jeffrey, D.J., Knuth, D.E.: A sequence of series for the Lambert-W function. In: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation. ISSAC ’97, pp. 197–204. ACM, New York (1997). MR1809988. https://doi.org/10.1145/258726.258783
Corless, R.M., Gonnet, G.H., Hare, D., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Comput. Math. 5, 329–359 (1996). MR1414285. https://doi.org/10.1007/BF02124750
Fukushima, T.: Precise and fast computation of Lambert W-functions without transcendental function evaluations. J. Comput. Appl. Math. 244, 77–89 (2013). MR3005760. https://doi.org/10.1016/j.cam.2012.11.021
Harris, T.E.: The Theory of Branching Processes. Springer, Berlin (1963). MR0163361
Johnson, N.L., Kemp, A.W., Kotz, S.: Univariate Discrete Distributions. John Wiley & Sons (2005). MR2163227. https://doi.org/10.1002/0471715816
Kovalenko, I.N., Kuznetchov, N.J., Shurenkov, V.M.: Random Processes. Naukova dumka, Kiev (1983). MR0751235
Luchko, Y., Trujillo, J., Velasco, M.P.: The Wright function and its numerical evaluation. Int. J. Pure Appl. Math. 64 (4), 567–575 (2010). MR2796971
Mainardi, F., Mura, A., Pagnini, G.: The M-Wright Function in Time-Fractional Diffusion Processes: A tutorial survey. Int. J. Differ. Equ. 2010, 104505 (2010). MR2592742. https://doi.org/10.1155/2010/104505
Merlini, D., Sprugnoli, R., Verri, M.C.: Lagrange inversion: When and How. Acta Appl. Math. 94, 233–249 (2006). MR2290868. https://doi.org/10.1007/s10440-006-9077-7
Mező, I., Keady, G.: Some physical applications of generalized Lambert functions. Eur. J. Phys. 37 (6), 065802 (2016). https://doi.org/10.1088/0143-0807/37/6/065802
Pakes, A.G.: Characterization of discrete laws via mixed sums and Markov branching processes. Stoch. Process. Appl. 55 (2), 285–300 (1995). MR1313024. https://doi.org/10.1016/0304-4149(94)00049-Y
Pakes, A.G.: Lambert’s W, infinite divisibility and Poisson mixtures. J. Math. Anal. Appl. 378, 480–492 (2011). MR2773259. https://doi.org/10.1016/j.jmaa.2011.01.066
Paris, R.B., Vinogradov, V.: Asymptotic and structural properties of special cases of the Wright function arising in probability theory. Lith. Math. J. 56, 377–409 (2016). MR3530225. https://doi.org/10.1007/s10986-016-9324-1
Scott, T.C., Fee, G., Grotendorst, J.: Asymptotic series of generalized Lambert-W function. ACM Commun. Comput. Algebra 47 (3-4), 75–83 (2014). MR3167418. https://doi.org/10.1145/2576802.2576804
Sevastyanov, B.A.: Transient phenomena in branching stochastic processes. Theory Probab. Appl. 4 (2), 113–128 (1959). MR0121854. https://doi.org/10.1137/1104011
Sevastyanov, B.A.: Branching Processes. Nauka, Moscow (1971). MR0345229
Snyder, D.L., Miller, M.I.: Random Point Processes in Time and Space, Second Edition. Springer, New York (1991). https://doi.org/10.1007/978-1-4612-3166-0
Wang, W., Wang, T.: General identities on Bell polynomials. Comput. Math. Appl. 58, 104–118 (2009). MR2535972. https://doi.org/10.1016/j.camwa.2009.03.093
Yee, T.W.: The vgam package for categorical data analysis. J. Stat. Softw. 32 (10), 1–34 (2010). https://doi.org/10.18637/jss.v032.i10