Asymptotic normality of the residual correlogram in the continuous-time nonlinear regression model
Volume 8, Issue 1 (2021), pp. 93–113
Pub. online: 21 December 2020
Type: Research Article
Open Access
Received
28 July 2020
28 July 2020
Revised
5 December 2020
5 December 2020
Accepted
5 December 2020
5 December 2020
Published
21 December 2020
21 December 2020
Abstract
In a continuous time nonlinear regression model the residual correlogram is considered as an estimator of the stationary Gaussian random noise covariance function. For this estimator the functional central limit theorem is proved in the space of continuous functions. The result obtained shows that the limiting sample continuous Gaussian random process coincides with the limiting process in the central limit theorem for standard correlogram of the random noise in the specified regression model.
References
Anderson, T.W.: The Statistical Analysis of Time Series. Wiley, New York (1971). MR0283939
Billingsley, P.: Convergence of Probability Measures, 2nd Edition. Wiley, New York (2013). MR0233396
Buldygin, V.V.: On the properties of an empirical correlogram of a Gaussian process with square integrable spectral density. Ukr. Math. J. 47, 1006–1021 (1995). MR1367943. https://doi.org/10.1007/BF01084897
Buldygin, V.V., Kozachenko, Y.V.: Metric Characterization of Random Variables and Random Processes. American Mathematical Society, Providence (2000). MR1743716. https://doi.org/10.1090/mmono/188
Gikhman, I.I., Skorokhod, A.V.: Introduction to the Theory of Random Processes. Dover Publications, Mineola, New York (1996). MR1435501
Grenander, U.: On the estimation of regression coefficients in the case of an autocorrelated disturbance. Ann. Math. Stat. 25(2), 252–272 (1954). MR0062402. https://doi.org/10.1214/aoms/1177728784
Hannan, E.J.: Multiple Time Series. Wiley, New York (1970). MR0279952
Ibragimov, I.A., Rozanov, Y.A.: Gaussian Random Processes. Springer, New York (1980). MR0543837
Ivanov, A., Kozachenko, Y., Moskvychova, K.: Large deviations of the correlogram estimator of the random noise covariance function in the nonlinear regression model. Commun. Stat. Theory Methods (in press). https://doi.org/10.1080/03610926.2020.1713369
Ivanov, A.V.: A solution of the problem of detecting hidden periodicities. Theory Probab. Math. Stat. 20, 51–68 (1980). MR0529259
Ivanov, A.V.: Consistency of the least squares estimator of the amplitudes and angular frequencies of a sum of harmonic oscillations in models with long-range dependence. Theory Probab. Math. Stat. 80, 61–69 (2010). MR2541952. https://doi.org/10.1090/S0094-9000-2010-00794-0
Ivanov, A.V., Leonenko, N.N.: Statistical Analysis of Random Fields. Kluwer Acad.Publ., Dordrecht-Boston-London (1989). MR1009786. https://doi.org/10.1007/978-94-009-1183-3
Ivanov, A.V., Pryhod’ko, V.V.: On the whittle estimator of the parameter of spectral density of random noise in the nonlinear regression model. Math. J. 67, 1183–1203 (2016). MR3473712. https://doi.org/10.1007/s11253-016-1145-1
Ivanov, A.V., Leonenko, N.N., Orlovskyi, I.V.: On the whittle estimator for linear random noise spectral density parameter in continuous-time nonlinear regression models. Stat. Inference Stoch. Process. 23, 129–169 (2020). MR4072255. https://doi.org/10.1007/s11203-019-09206-z
Ivanov, A.V., Leonenko, N.N., Ruiz-Medina, M.D., Zhurakovsky, B.M.: Estimation of harmonic component in regression with cyclically dependent errors. Statistics 49(1), 156–186 (2015). MR3304373. https://doi.org/10.1080/02331888.2013.864656
Ivanov, O., Moskvychova, K.: Asymptotic expansion of the moments of correlogram estimator for the random-noise covariance function in the nonlinear regression model. Ukr. Math. J. 66(6), 884–904 (2014). MR3284595. https://doi.org/10.1007/s11253-014-0979-7
Ivanov, O., Moskvychova, K.: Asymptotic normality of the correlogram estimator of the covariance function of a random noise in the nonlinear regression model. Theory Probab. Math. Stat. 91, 61–70 (2015). MR3364123. https://doi.org/10.1090/tpms/966
Ivanov, O.V., Moskvychova, K.K.: Stochastic asymptotic expansion of correlogram estimator of the correlation function of random noise in nonlinear regression model. Theory Probab. Math. Stat. 90, 87–101 (2015). MR3241862. https://doi.org/10.1090/tpms/951
Leonenko, N.N.: Limit Theorems for Random Fields with Singular Spectrum. Kluwer AP, Dordrecht (1999). MR1687092. https://doi.org/10.1007/978-94-011-4607-4
Pfanzagl, J.: On the measurability and consistency of minimum contrast estimates. Metrika 14, 249–272 (1969). https://doi.org/10.1007/BF02613654
Walker, A.M.: On the estimation of a harmonic component in a time series with stationary dependent residuals. Adv. Appl. Probab. 5, 217–241 (1973). MR0336943. https://doi.org/10.2307/1426034
Whittle, P.: The simultaneous estimation of a time series harmonic components and covariance structure. Trab. Estad. Investig. Oper. 3, 43–57 (1952). MR0051487