Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 10, Issue 2 (2023)
  4. Transport equation driven by a stochasti ...

Transport equation driven by a stochastic measure
Volume 10, Issue 2 (2023), pp. 197–209
Vadym Radchenko ORCID icon link to view author Vadym Radchenko details  

Authors

 
Placeholder
https://doi.org/10.15559/23-VMSTA222
Pub. online: 6 February 2023      Type: Research Article      Open accessOpen Access

Received
7 September 2022
Revised
2 January 2023
Accepted
27 January 2023
Published
6 February 2023

Abstract

The stochastic transport equation is considered where the randomness is given by a symmetric integral with respect to a stochastic measure. For a stochastic measure, only σ-additivity in probability and continuity of paths is assumed. Existence and uniqueness of a weak solution to the equation are proved.

1 Introduction

We consider the stochastic transport equation that formally can be written in the form
(1)
\[ \begin{array}{r}\displaystyle \frac{\partial u(t,x)}{\partial t}\hspace{0.1667em}dt+b(t,x)\frac{\partial u(t,x)}{\partial x}\hspace{0.1667em}dt+\frac{\partial u(t,x)}{\partial x}\circ d\mu (t)=0,\\ {} \displaystyle u(0,x)={u_{0}}(x),\hspace{1em}x\in \mathbb{R},\hspace{1em}t\in [0,T].\end{array}\]
Here μ is a stochastic measure (SM), see Definition 1 below. We assume that μ is defined on the Borel σ-algebra of $[0,T]$, and the process ${\mu _{t}}=\mu ((0,t])$ has a continuous paths. Assumptions on b and ${u_{0}}$ are given in Section 3. Equation (1) is to be understood in the weak sense. The definition of a weak solution is given in (6).
We will prove existence and uniqueness of the solution. Similarly to other types of stochastic transport equation, we demonstrate that the solution is given by the formula $u(t,x)={u_{0}}({X_{t}^{-1}}(x))$ where ${X_{t}}(x)$ satisfies the auxiliary equation (7).
The stochastic integral with respect to μ is defined as a symmetric integral. This Stratonovich-type integral was studied in [18], we recall its definition and basic properties in Section 2.2. SMs include many important classes of processes, but we can prove existence of the integral only for integrands of the form $f({\mu _{t}},t)$ where $f\in {\mathbb{C}^{1,1}}(\mathbb{R}\times [0,T])$. Thus, we will find our solution u having this form.
For the stochastic transport equation driven by the Wiener process, the existence and uniqueness of the solution were proved under different assumptions on b and ${u_{0}}$, see [3, 5, 7, 12, 25]. It was shown that a stochastic term in the transport equation leads to regularization of the solution, see [1, 6, 7]. Equation in bounded domain was studied in [14]. In these papers, the stochastic term is given by the Stratonovich integral and solution is considered in the weak sense. In [26] the existence and uniqueness of stochastic strong solution are obtained, the renormalized weak solution was studied in [28].
Transport equation with other stochastic integrators is less studied. The existence and uniqueness of the solution to equation driven by the Lévy white noise was proved in [16], to equation driven by the fractional Brownian motion – in [15]. In the latter papers, techniques from white noise analysis and the Malliavin calculus approach were used.
In this paper, we consider the rather general stochastic integrator. At the same time, we assume some restrictive assumptions on b and ${u_{0}}$, and study the case of one-dimensional spatial variable.
The recent results for the equations driven by stochastic measures may be found in [2, 9, 10].
The rest of the paper is organized as follows. In Section 2 we recall the definitions and basic facts concerning stochastic measures and symmetric integrals. Also we prove the analogue of the Fubini theorem for our integral that we will need below. In Section 3 we give our assumptions on the equation and formulate the main result. Section 4 is devoted to the proof of the existence of the solution, and we give the explicit formula for u. In Section 5, under some additional assumptions, we obtain the uniqueness of the solution.

2 Preliminaries

2.1 Stochastic measures

Let ${\mathsf{L}_{0}}={\mathsf{L}_{0}}(\Omega ,\mathcal{F},\mathsf{P})$ be the set of all real-valued random variables defined on the complete probability space $(\Omega ,\mathcal{F},\mathsf{P})$ (more precisely, the set of equivalence classes). Convergence in ${\mathsf{L}_{0}}$ means the convergence in probability. Let $\mathsf{X}$ be an arbitrary set and $\mathcal{B}$ be a σ-algebra of subsets of $\mathsf{X}$.
Definition 1.
A σ-additive mapping $\mu :\hspace{2.5pt}\mathcal{B}\to {\mathsf{L}_{0}}$ is called stochastic measure (SM).
We do not assume existence of moments or martingale properties for the SM. In other words, μ is ${\mathsf{L}_{0}}$-valued vector measure.
Important examples of SMs are orthogonal stochastic measures, α-stable random measures defined on a σ-algebra for $\alpha \in (0,1)\cup (1,2]$ (see [21, Chapter 3]).
Many examples of the SMs on the Borel subsets of $[0,T]$ may be given by the Wiener-type integral
(2)
\[ \mu (A)={\int _{[0,T]}}{\mathbf{1}_{A}}(t)\hspace{0.1667em}d{X_{t}}.\]
We note the following cases of processes ${X_{t}}$ in (2) that generate SM.
  • 1. ${X_{t}}$ is any square integrable continuous martingale.
  • 2. ${X_{t}}={W_{t}^{H}}$ is the fractional Brownian motion with Hurst index $H>1/2$, see Theorem 1.1 [11].
  • 3. ${X_{t}}={S_{t}^{k}}$ is the sub-fractional Brownian motion for $k=H-1/2$, $1/2 < H < 1$, see Theorem 3.2 (ii) and Remark 3.3 c) in [23].
  • 4. ${X_{t}}={Z_{H}^{k}}(t)$ is the Hermite process, $1/2 < H < 1$, $k\ge 1$, see [8], [24, Section 3.1.3]. ${Z_{H}^{2}}(t)$ is known as the Rosenblatt process, see also [22, Section 3].
The detailed theory of stochastic measures is presented in [20].
The results of this paper will be obtained under the following assumption on μ.
Assumption A1.
μ is an SM on Borel subsets of $[0,T]$, and the process ${\mu _{t}}=\mu ((0,t])$ has continuous paths on $[0,T]$.
Processes ${X_{t}}$ in examples 1–4 are continuous, therefore A1 holds in these cases.

2.2 Symmetric integral

The symmetric integral of random functions with respect to stochastic measures was considered in [18]. We review the basic facts and definitions concerning this integral.
Definition 2.
Let ${\xi _{t}}$ and ${\eta _{t}}$ be random processes on $[0,T]$, $0={t_{0}^{n}} < {t_{1}^{n}} < \cdots < {t_{{j_{n}}}^{n}}=T$ be a sequence of partitions such that ${\max _{k}}|{t_{k}^{n}}-{t_{k-1}^{n}}|\to 0$, $n\to \infty $. We define
(3)
\[ {\int _{(0,T]}}{\xi _{t}}\circ d{\eta _{t}}:=\text{p-}\underset{n\to \infty }{\lim }{\sum \limits_{k=1}^{{j_{n}}}}\frac{{\xi _{{t_{k-1}^{n}}}}+{\xi _{{t_{k}^{n}}}}}{2}\hspace{0.1667em}({\eta _{{t_{k}^{n}}}}-{\eta _{{t_{k-1}^{n}}}}),\]
provided that this limit in probability exists for any such sequence of partitions.
For a Wiener process ${\eta _{t}}$ and adapted ${\xi _{t}}$ we obtain the classical Stratonovich integral. If ${\eta _{t}}$ and ${\xi _{t}}$ are Hölder continuous with exponents ${\gamma _{\eta }}$ and ${\gamma _{\xi }}$, ${\gamma _{\eta }}+{\gamma _{\xi }}>1$, then value of (3) equals to the integral defined in [27].
The following theorem describes the class of processes for which the integral is well-defined.
Theorem 1 (Theorem 4.6 [18]).
Let A1 hold, $f\in {\mathbb{C}^{1,1}}(\mathbb{R}\times [0,T])$. Then integral (3) of $f({\mu _{t}},t)$ with respect to ${\mu _{t}}$ is well-defined, and
(4)
\[ {\int _{(0,T]}}f({\mu _{t}},t)\circ d{\mu _{t}}=F({\mu _{T}},T)-{\int _{(0,T]}}{F^{\prime }_{t}}({\mu _{t}},t)\hspace{0.1667em}dt,\]
where $F(z,t)={\textstyle\int _{0}^{z}}f(y,t)\hspace{0.1667em}dy$.
Some other properties and equations with the symmetric integral are considered in [18–20].

2.3 Fubini theorem for symmetric integral

We will need the following auxiliary statement.
Lemma 1.
Let $f:\mathbb{R}\times [0,T]\times \mathbb{R}\to \mathbb{R}$ be measurable and has continuous derivatives ${f^{\prime }_{y}}(y,t,x)$, ${f^{\prime }_{t}}(y,t,x)$. Assume that
\[ |f(y,t,x)|\le g(x),\hspace{1em}|{f^{\prime }_{y}}(y,t,x)|\le {g_{1}}(x),\hspace{1em}|{f^{\prime }_{t}}(y,t,x)|\le {g_{2}}(x)\]
for some $g,{g_{1}},{g_{2}}\in {\mathsf{L}^{1}}(\mathbb{R},dx)$. Then
(5)
\[ {\int _{\mathbb{R}}}{\int _{(0,T]}}f({\mu _{t}},t,x)\circ d{\mu _{t}}\hspace{0.1667em}dx={\int _{(0,T]}}{\int _{\mathbb{R}}}f({\mu _{t}},t,x)\hspace{0.1667em}dx\hspace{0.1667em}\circ d{\mu _{t}}.\]
Proof.
Denote
\[ F(z,t,x)={\int _{0}^{z}}f(y,t,x)\hspace{0.1667em}dy,\hspace{1em}\tilde{F}(z,t)={\int _{0}^{z}}{\int _{\mathbb{R}}}f(y,t,x)\hspace{0.1667em}dx\hspace{0.1667em}dy,\hspace{1em}z\in \mathbb{R}.\]
Theorem 1 and assumptions of the lemma imply that the integrals in (5) are well-defined. Applying (4), we transform left-hand side and right-hand side of (5)
\[\begin{array}{r}\displaystyle {\int _{\mathbb{R}}}{\int _{(0,T]}}f({\mu _{t}},t,x)\circ \hspace{0.1667em}d{\mu _{t}}\hspace{0.1667em}dx={\int _{\mathbb{R}}}\Big(F({\mu _{T}},T,x)-{\int _{(0,T]}}{F^{\prime }_{t}}({\mu _{t}},t,x)\hspace{0.1667em}dt\Big)dx,\\ {} \displaystyle {\int _{(0,T]}}{\int _{\mathbb{R}}}f({\mu _{t}},t,x)\hspace{0.1667em}dx\hspace{0.1667em}\circ d{\mu _{t}}=\tilde{F}({\mu _{T}},T)-{\int _{(0,T]}}{\tilde{F}^{\prime }_{t}}({\mu _{t}},t)\hspace{0.1667em}dt.\end{array}\]
The equalities
\[\begin{array}{r}\displaystyle {\int _{\mathbb{R}}}F({\mu _{T}},T,x)\hspace{0.1667em}dx=\tilde{F}({\mu _{T}},T)\\ {} \displaystyle \Leftrightarrow {\int _{\mathbb{R}}}{\int _{0}^{{\mu _{T}}}}f(y,T,x)\hspace{0.1667em}dy\hspace{0.1667em}dx={\int _{0}^{{\mu _{T}}}}{\int _{\mathbb{R}}}f(y,T,x)\hspace{0.1667em}dx\hspace{0.1667em}dy,\\ {} \displaystyle {\int _{\mathbb{R}}}{\int _{(0,T]}}{F^{\prime }_{t}}({\mu _{t}},t,x)\hspace{0.1667em}dt\hspace{0.1667em}dx={\int _{(0,T]}}{\tilde{F}^{\prime }_{t}}({\mu _{t}},t)\hspace{0.1667em}dt\\ {} \displaystyle \Leftrightarrow {\int _{\mathbb{R}}}{\int _{(0,T]}}{\int _{0}^{{\mu _{t}}}}{f^{\prime }_{t}}(y,t,x)\hspace{0.1667em}dy\hspace{0.1667em}dt\hspace{0.1667em}dx={\int _{(0,T]}}{\int _{0}^{{\mu _{t}}}}{\int _{\mathbb{R}}}{f^{\prime }_{t}}(y,t,x)\hspace{0.1667em}dx\hspace{0.1667em}dy\hspace{0.1667em}dt.\end{array}\]
hold by usual Fubini’s theorem.  □

3 The problem. Formulation of the main result

We consider equation (1) in the weak form. This means that $u:[0,T]\times \mathbb{R}\times \Omega \to \mathbb{R}$ is a measurable random function such that for each $\varphi \in {\mathbb{C}_{0}^{\infty }}(\mathbb{R})$ holds
(6)
\[\begin{array}{r}\displaystyle {\int _{\mathbb{R}}}u(t,x)\varphi (x)\hspace{0.1667em}dx={\int _{\mathbb{R}}}{u_{0}}(x)\varphi (x)\hspace{0.1667em}dx\\ {} \displaystyle +{\int _{0}^{t}}{\int _{\mathbb{R}}}u(s,x)\Big(b(s,x){\varphi ^{\prime }}(x)+\frac{\partial b(s,x)}{\partial x}\varphi (x)\Big)\hspace{0.1667em}dx\hspace{0.1667em}ds\\ {} \displaystyle +{\int _{0}^{t}}{\int _{\mathbb{R}}}u(s,x){\varphi ^{\prime }}(x)\hspace{0.1667em}dx\hspace{0.1667em}\circ d\mu (s).\end{array}\]
By ${\mathbb{C}_{0}^{\infty }}(\mathbb{R})$ we denote the class of infinitely differentiable functions with the compact support.
For our equation, we will refer to the following assumptions.
Assumption A2.
${u_{0}}:\mathbb{R}\times \Omega \to \mathbb{R}$ is measurable and has continuous derivative in x.
Assumption A3.
$|{u_{0}}(x)|\le C(\omega )$ for some finite random constant $C(\omega )$.
Assumption A4.
$b:[0,T]\times \mathbb{R}\to \mathbb{R}$ is continuous, $\frac{\partial b(t,x)}{\partial x}$ is continuous and bounded.
Assumption A5.
${\sup _{t\in [0,T]}}{\textstyle\int _{|x|\ge r}}\frac{|b(t,x)|}{1+|x|}\hspace{0.1667em}dx\to 0$, $r\to \infty $.
Note that, by A4, b is globally Lipschitz continuous in x.
For each fixed $\omega \in \Omega $, we consider the following auxiliary equation
(7)
\[ {X_{t}}(x)=x+{\int _{0}^{t}}b(r,{X_{r}}(x))\hspace{0.1667em}dr+{\mu _{t}},\hspace{1em}0\le t\le T.\]
Assumption A4 imply that (7) has a unique solution on $[0,T]$ for each x.
By the well known result of theory of ordinary differential equations, the solution has a continuous derivative
\[ {X^{\prime }_{t}}(x)=\frac{\partial }{\partial x}{X_{t}}(x).\]
We have
(8)
\[\begin{array}{r}\displaystyle {X^{\prime }_{t}}(x)=1+{\int _{0}^{t}}\frac{\partial b(r,{X_{r}}(x))}{\partial x}{X^{\prime }_{r}}(x)\hspace{0.1667em}dr\\ {} \displaystyle \Rightarrow \frac{\partial }{\partial t}{X^{\prime }_{t}}(x)=\frac{\partial b(t,{X_{t}}(x))}{\partial x}{X^{\prime }_{t}}(x)\\ {} \displaystyle \Rightarrow {X^{\prime }_{t}}(x)=\exp \Big\{{\int _{0}^{t}}\frac{\partial b(s,{X_{s}}(x))}{\partial x}\hspace{0.1667em}ds\Big\}.\end{array}\]
Therefore, ${X^{\prime }_{t}}(x)>0$, and the function ${X_{t}^{-1}}(x)$, where the inverse is taken with respect to variable x, is well-defined.
Note that ${X_{t}}$ is the sum of a differentiable function of t and ${\mu _{t}}$, ${X^{\prime }_{t}}$ is a differentiable function of t. Therefore, by Theorem 1, the integral of the form
\[ {\int _{(0,T]}}g({X_{t}},{X^{\prime }_{t}},{\mu _{t}},t)\circ d{\mu _{t}},\hspace{1em}g\in {\mathbb{C}^{1,1,1,1}}({\mathbb{R}^{3}}\times [0,T]),\]
is well-defined.
The main result of the paper is the following.
Theorem 2.
1) Let Assumptions A1, A2, A4 hold, ${X_{t}}(x)$ be the solution of (7). Then the random function
(9)
\[ u(t,x)={u_{0}}({X_{t}^{-1}}(x))\]
satisfies (6).
2) In addition, let Assumptions A3 and A5 hold. Then solution (9) is unique in the class of measurable random functions $u(t,x)=h({\mu _{t}},t,x)$, such that $h(\cdot ,\cdot ,x)\in {\mathbb{C}^{1,1}}(\mathbb{R}\times [0,T])$ for each $x\in \mathbb{R}$, and $|u(t,x)|\le C(\omega )$ for some finite random constant $C(\omega )$.
Remark 1.
Note that $u(t,x)={u_{0}}({X_{t}^{-1}}(x))$ has a form $h({\mu _{t}},t,x)$ from the second part of the theorem. This follows from Assumption A2 and standard statements about the differentiability of inverse functions. From (7) and (8) we have that ${X_{t}}(x)=g({\mu _{t}},t,x)$, where $g\in {\mathbb{C}^{1,1,1}}(\mathbb{R}\times [0,T]\times \mathbb{R})$. For the mapping
\[ (\mu ,t,x)\to (\mu ,t,g(\mu ,t,x)),\]
the matrix of the first derivatives is nondegenerated. Therefore, the inverse mapping is well-defined and smooth (see, for example, [17, Section 7.3]).
Remark 2.
Let us compare our assumptions with those made in other papers. Usually, it is supposed that ${u_{0}}$ is measurable and bounded (see, for example, [7, 12, 15, 25]). We additionally assume that ${u_{0}}$ has a continuous derivative, we need this to guarantee that the symmetric integral of ${u_{0}}({X_{t}^{-1}}(x))$ be well-defined.
Condition of differentiability of b is standard, boundedness of $\frac{\partial b}{\partial x}$ may be assumed in some ${\mathsf{L}_{p}}$ norm (see [7, 25]) or uniformly ([15]). Note that in [12] the main result was obtained for arbitrary bounded measurable b.
Our integrability condition A5 is technical and is important for our method. It is similar to respective assumptions in [1, 3, 13].

4 Existence of the solution

In this section, we prove the first statement of our theorem.
By the chain rule (4), for $\varphi \in {\mathbb{C}_{0}^{\infty }}(\mathbb{R})$ we have
(10)
\[\begin{array}{r}\displaystyle {d_{t}}\Big[{X^{\prime }_{t}}(x)\varphi ({X_{t}}(x))\Big]=\varphi ({X_{t}}(x)){d_{t}}\Big[{X^{\prime }_{t}}(x)\Big]+{X^{\prime }_{t}}(x){d_{t}}\Big[\varphi ({X_{t}}(x))\Big]\\ {} \displaystyle \stackrel{\text{(7), (8)}}{=}\varphi ({X_{t}}(x))\frac{\partial b(t,{X_{t}}(x))}{\partial x}{X^{\prime }_{t}}(x)\hspace{0.1667em}dt\\ {} \displaystyle +{X^{\prime }_{t}}(x){\varphi ^{\prime }}({X_{t}}(x))b(t,{X_{t}}(x))\hspace{0.1667em}dt+{X^{\prime }_{t}}(x){\varphi ^{\prime }}({X_{t}}(x))\circ d\mu (t).\end{array}\]
Applying the change of variables $y={X_{t}}(x)$, we get
\[\begin{array}{r}\displaystyle {\int _{\mathbb{R}}}{u_{0}}({X_{t}^{-1}}(y))\varphi (y)\hspace{0.1667em}dy={\int _{\mathbb{R}}}{u_{0}}(x){X^{\prime }_{t}}(x)\varphi ({X_{t}}(x))\hspace{0.1667em}dx\\ {} \displaystyle ={\int _{\mathbb{R}}}{u_{0}}(x){\Big[{X^{\prime }_{t}}(x)\varphi ({X_{t}}(x))\Big|_{t=0}}+{\int _{0}^{t}}{d_{s}}\big[{X^{\prime }_{s}}(x)\varphi ({X_{s}}(x))\big]\Big]\hspace{0.1667em}dx\\ {} \displaystyle \stackrel{\text{(10)}}{=}{\int _{\mathbb{R}}}{u_{0}}(x)\varphi (x)\hspace{0.1667em}dx+{\int _{\mathbb{R}}}{u_{0}}(x){\int _{0}^{t}}\varphi ({X_{s}}(x))\frac{\partial b(s,{X_{s}}(x))}{\partial x}{X^{\prime }_{s}}(x)\hspace{0.1667em}ds\hspace{0.1667em}dx\\ {} \displaystyle +{\int _{\mathbb{R}}}{u_{0}}(x){\int _{0}^{t}}{X^{\prime }_{s}}(x){\varphi ^{\prime }}({X_{s}}(x))b(s,{X_{s}}(x))\hspace{0.1667em}ds\hspace{0.1667em}dx\\ {} \displaystyle +{\int _{\mathbb{R}}}{u_{0}}(x){\int _{0}^{t}}{X^{\prime }_{s}}(x){\varphi ^{\prime }}({X_{s}}(x))\circ d{\mu _{s}}\hspace{0.1667em}dx\\ {} \displaystyle \stackrel{\text{(5)}}{=}{\int _{\mathbb{R}}}{u_{0}}(x)\varphi (x)\hspace{0.1667em}dx+{\int _{0}^{t}}{\int _{\mathbb{R}}}{u_{0}}(x)\varphi ({X_{s}}(x))\frac{\partial b(s,{X_{s}}(x))}{\partial x}{X^{\prime }_{s}}(x)\hspace{0.1667em}dx\hspace{0.1667em}ds\\ {} \displaystyle +{\int _{0}^{t}}{\int _{\mathbb{R}}}{u_{0}}(x){X^{\prime }_{s}}(x){\varphi ^{\prime }}({X_{s}}(x))b(s,{X_{s}}(x))\hspace{0.1667em}dx\hspace{0.1667em}ds\\ {} \displaystyle +{\int _{0}^{t}}{\int _{\mathbb{R}}}{u_{0}}(x){X^{\prime }_{s}}(x){\varphi ^{\prime }}({X_{s}}(x))\hspace{0.1667em}dx\hspace{0.1667em}\circ d{\mu _{s}}.\end{array}\]
Lemma 1 may be applied here because φ has a compact support. Assumption A4 and (8) imply that ${C_{1}}\le {X^{\prime }_{s}}\le {C_{2}}$ for some positive constants ${C_{1}}$ and ${C_{2}}$, therefore set $\{x:\hspace{2.5pt}{\varphi ^{\prime }}({X_{s}}(x))\ne 0\}$ is bounded.
Taking the inverse change of variable $x={X_{t}^{-1}}(y)$, we obtain
\[\begin{array}{r}\displaystyle {\int _{\mathbb{R}}}{u_{0}}({X_{t}^{-1}}(y))\varphi (y)\hspace{0.1667em}dy\\ {} \displaystyle ={\int _{\mathbb{R}}}{u_{0}}(x)\varphi (x)\hspace{0.1667em}dx+{\int _{0}^{t}}{\int _{\mathbb{R}}}{u_{0}}({X_{s}^{-1}}(y))\varphi (y)\frac{\partial b(s,y)}{\partial x}\hspace{0.1667em}dy\hspace{0.1667em}ds\\ {} \displaystyle +{\int _{0}^{t}}{\int _{\mathbb{R}}}{u_{0}}({X_{s}^{-1}}(y)){\varphi ^{\prime }}(y)b(s,y)\hspace{0.1667em}dy\hspace{0.1667em}ds+{\int _{0}^{t}}{\int _{\mathbb{R}}}{u_{0}}({X_{s}^{-1}}(y)){\varphi ^{\prime }}(y)\hspace{0.1667em}dy\hspace{0.1667em}\circ d{\mu _{s}}.\end{array}\]
Thus, $u(t,x)={u_{0}}({X_{t}^{-1}}(x))$ satisfies (6).

5 Uniqueness of the solution

In this section, we prove the second statement of our theorem. We will follow the standard approach (see, for example, proof of the uniqueness of the solution in [3, 13]).
Let $u(t,x)$ satisfy (6) with ${u_{0}}(x)=0$. We will obtain that $u(t,x)=0$ what implies the uniqueness of the solution.
For this case, from (6) for $\varphi \in {\mathbb{C}_{0}^{\infty }}(\mathbb{R})$ we get
(11)
\[\begin{array}{r}\displaystyle {\int _{\mathbb{R}}}u(t,x)\varphi (x)\hspace{0.1667em}dx={\int _{0}^{t}}{\int _{\mathbb{R}}}u(s,x)\Big(b(s,x){\varphi ^{\prime }}(x)+\frac{\partial b(s,x)}{\partial x}\varphi (x)\Big)\hspace{0.1667em}dx\hspace{0.1667em}ds\\ {} \displaystyle +{\int _{0}^{t}}{\int _{\mathbb{R}}}u(s,x){\varphi ^{\prime }}(x)\hspace{0.1667em}dx\hspace{0.1667em}\circ d{\mu _{s}}.\end{array}\]
Our solution has a form $u(t,x)=h({\mu _{t}},t,x)$. Denote
\[ G({\mu _{t}},t,y)={\int _{\mathbb{R}}}u(t,x)\varphi (x-y)\hspace{0.1667em}dx,\]
where $G(z,t,y)\in {\mathbb{C}^{1,1,\infty }}(\mathbb{R}\times [0,T]\times \mathbb{R})$. We have that $G(z,0,y)=0$ because $u(0,x)=0$, and
(12)
\[\begin{array}{r}\displaystyle \frac{\partial }{\partial {\mu _{t}}}G({\mu _{t}},t,{\mu _{t}})=\frac{\partial }{\partial z}G({\mu _{t}},t,{\mu _{t}})+\frac{\partial }{\partial y}G({\mu _{t}},t,{\mu _{t}})\\ {} \displaystyle =\frac{\partial }{\partial z}G({\mu _{t}},t,{\mu _{t}})-{\int _{\mathbb{R}}}u(t,x){\varphi ^{\prime }}(x-{\mu _{t}})\hspace{0.1667em}dx.\end{array}\]
We obtain
\[\begin{array}{r}\displaystyle G({\mu _{t}},t,{\mu _{t}})\stackrel{\text{(4)}}{=}{\int _{(0,t]}}\frac{\partial }{\partial s}G({\mu _{s}},s,{\mu _{s}})\hspace{0.1667em}ds+{\int _{(0,t]}}\frac{\partial }{\partial {\mu _{s}}}G({\mu _{s}},s,{\mu _{s}})\circ \hspace{0.1667em}d{\mu _{s}}\\ {} \displaystyle \stackrel{\text{(11), (12)}}{=}{\int _{0}^{t}}{\int _{\mathbb{R}}}b(s,x)u(s,x){\varphi ^{\prime }}(x-{\mu _{s}})\hspace{0.1667em}dx\hspace{0.1667em}ds\\ {} \displaystyle +{\int _{0}^{t}}{\int _{\mathbb{R}}}\frac{\partial b(s,x)}{\partial x}u(s,x)\varphi (x-{\mu _{s}})\hspace{0.1667em}dx\hspace{0.1667em}ds\\ {} \displaystyle +{\int _{0}^{t}}{\int _{\mathbb{R}}}u(s,x){\varphi ^{\prime }}(x-{\mu _{s}})\hspace{0.1667em}dx\hspace{0.1667em}\circ d{\mu _{s}}-{\int _{0}^{t}}{\int _{\mathbb{R}}}u(s,x){\varphi ^{\prime }}(x-{\mu _{s}})\hspace{0.1667em}dx\hspace{0.1667em}\circ d{\mu _{s}}\\ {} \displaystyle ={\int _{0}^{t}}{\int _{\mathbb{R}}}b(s,x)u(s,x){\varphi ^{\prime }}(x-{\mu _{s}})\hspace{0.1667em}dx\hspace{0.1667em}ds\\ {} \displaystyle +{\int _{0}^{t}}{\int _{\mathbb{R}}}\frac{\partial b(s,x)}{\partial x}u(s,x)\varphi (x-{\mu _{s}})\hspace{0.1667em}dx\hspace{0.1667em}ds.\end{array}\]
For $V(t,z)=u(t,z+{\mu _{t}})$, applying the change of the variable $x=z+{\mu _{t}}$, get
(13)
\[\begin{array}{r}\displaystyle {\int _{\mathbb{R}}}V(t,z)\varphi (z)\hspace{0.1667em}dz={\int _{0}^{t}}{\int _{\mathbb{R}}}b(s,z+{\mu _{s}})V(s,z)\frac{d\varphi (z)}{dz}\hspace{0.1667em}dz\hspace{0.1667em}ds\\ {} \displaystyle +{\int _{0}^{t}}{\int _{\mathbb{R}}}\frac{\partial b(s,z+{\mu _{s}})}{\partial z}V(s,z)\varphi (z)\hspace{0.1667em}dz\hspace{0.1667em}ds.\end{array}\]
Let ${\phi _{\varepsilon }}$ be a standard mollifier,
\[\begin{array}{r}\displaystyle {\phi _{\varepsilon }}(x)=\frac{1}{\varepsilon }\phi \Big(\frac{x}{\varepsilon }\Big),\hspace{1em}\phi \in {\mathbb{C}_{0}^{\infty }}(\mathbb{R}),\hspace{1em}\operatorname{supp}\phi \subset [-1,1],\\ {} \displaystyle \phi (x)\ge 0,\hspace{1em}{\int _{\mathbb{R}}}\phi (x)\hspace{0.1667em}dx=1.\end{array}\]
Denote ${V_{\varepsilon }}(t,x):=V(t,\cdot )\ast {\phi _{\varepsilon }}$. Substituting $\varphi (z)={\phi _{\varepsilon }}(x-z)$ in (13), we obtain that
\[\begin{array}{r}\displaystyle {V_{\varepsilon }}(t,x)={\int _{\mathbb{R}}}V(t,z){\phi _{\varepsilon }}(x-z)\hspace{0.1667em}dz\\ {} \displaystyle =-{\int _{0}^{t}}{\int _{\mathbb{R}}}b(s,z+{\mu _{s}})V(s,z){\phi ^{\prime }_{\varepsilon }}(x-z)\hspace{0.1667em}dz\hspace{0.1667em}ds\\ {} \displaystyle +{\int _{0}^{t}}{\int _{\mathbb{R}}}\frac{\partial b(s,z+{\mu _{s}})}{\partial z}V(s,z){\phi _{\varepsilon }}(x-z)\hspace{0.1667em}dz\hspace{0.1667em}ds.\end{array}\]
We take the derivative with respect to t, use the notation $B(t,z)=b(t,z+{\mu _{t}})$, and get
\[\begin{array}{r}\displaystyle \frac{\partial {V_{\varepsilon }}(t,x)}{\partial t}=-{\int _{\mathbb{R}}}B(t,z)V(t,z)\frac{\partial {\phi _{\varepsilon }}(x-z)}{\partial x}\hspace{0.1667em}dz\\ {} \displaystyle +{\int _{\mathbb{R}}}\frac{\partial B(t,z)}{\partial z}V(t,z){\phi _{\varepsilon }}(x-z)\hspace{0.1667em}dz\\ {} \displaystyle =-\frac{\partial }{\partial x}{\int _{\mathbb{R}}}B(t,z)V(t,z){\phi _{\varepsilon }}(x-z)\hspace{0.1667em}dz\\ {} \displaystyle +{\int _{\mathbb{R}}}\Big[\frac{\partial }{\partial z}[B(t,z)V(t,z)]-B(t,z)\frac{\partial V(t,z)}{\partial z}\Big]{\phi _{\varepsilon }}(x-z)\hspace{0.1667em}dz\\ {} \displaystyle \stackrel{(\diamond )}{=}-\frac{\partial }{\partial x}(BV(t,\cdot )\ast {\phi _{\varepsilon }})(x)+\frac{\partial }{\partial x}(BV(t,\cdot )\ast {\phi _{\varepsilon }})(x)\\ {} \displaystyle -{\int _{\mathbb{R}}}B(t,z)\frac{\partial V(t,z)}{\partial z}{\phi _{\varepsilon }}(x-z)\hspace{0.1667em}dz=-{\int _{\mathbb{R}}}B(t,z)\frac{\partial V(t,z)}{\partial z}{\phi _{\varepsilon }}(x-z)\hspace{0.1667em}dz.\end{array}\]
In (◇) we have used that ${\phi _{\varepsilon }}$ has a compact support, and, by integration by parts,
\[\begin{array}{r}\displaystyle {\int _{\mathbb{R}}}\frac{\partial }{\partial z}[B(t,z)V(t,z)]{\phi _{\varepsilon }}(x-z)\hspace{0.1667em}dz={\int _{\mathbb{R}}}{\phi _{\varepsilon }}(x-z)\hspace{0.1667em}d[B(t,z)V(t,z)]\\ {} \displaystyle =-{\int _{\mathbb{R}}}[B(t,z)V(t,z)]\hspace{0.1667em}{d_{z}}{\phi _{\varepsilon }}(x-z)={\int _{\mathbb{R}}}[B(t,z)V(t,z)]\frac{\partial {\phi _{\varepsilon }}(x-z)}{\partial x}\hspace{0.1667em}dz\\ {} \displaystyle =\frac{\partial }{\partial x}(BV(t,\cdot )\ast {\phi _{\varepsilon }})(x).\end{array}\]
Thus,
(14)
\[ \frac{\partial {V_{\varepsilon }}(t,x)}{\partial t}+\Big(B(t,z)\frac{\partial V(t,z)}{\partial z}\Big)\ast {\phi _{\varepsilon }}(x)=0.\]
Denote
(15)
\[ {\mathcal{R}_{\varepsilon }}(B,V)=\frac{\partial {V_{\varepsilon }}(t,x)}{\partial t}+B(t,x)\frac{\partial {V_{\varepsilon }}(t,x)}{\partial x}\stackrel{\text{(14)}}{=}B\frac{\partial ({\phi _{\varepsilon }}\ast V)}{\partial x}-{\phi _{\varepsilon }}\ast \Big(B\frac{\partial V}{\partial x}\Big).\]
Lemma II.1 i) [4] gives that for each fixed t
(16)
\[ {\mathcal{R}_{\varepsilon }}(B,{V_{\varepsilon }})\to 0,\hspace{1em}\varepsilon \to 0\hspace{1em}\text{in}\hspace{1em}{\mathsf{L}_{loc}^{1}}(\mathbb{R},dx),\]
provided that $B(t,\cdot )\in {\mathsf{W}_{loc}^{1,1}}(\mathbb{R})$, $V(t,\cdot )\in {\mathsf{L}_{loc}^{\infty }}(\mathbb{R},dx)$. These conditions hold due to assumptions of our theorem.
Consider ${\pi _{r}}(x)={\pi _{1}}(x/r)$, where
\[ {\pi _{1}}(x)=\left\{\begin{array}{l@{\hskip10.0pt}l}1,\hspace{1em}& |x|<1,\\ {} 1-2{(|x|-1)^{2}},\hspace{1em}& 1\le |x|\le 3/2,\\ {} 2{(|x|-2)^{2}}\in [0,1],\hspace{1em}& 3/2\le |x|\le 2,\\ {} 0,\hspace{1em}& |x|>2.\end{array}\right.\]
Then ${\pi _{r}}\in {\mathbb{C}^{(1)}}(\mathbb{R})$, and $|{\pi ^{\prime }_{r}}|\le \frac{C}{r}$. We have that
\[ {\int _{\mathbb{R}}}{d_{x}}(B{({V_{\varepsilon }})^{2}}{\pi _{r}})=\underset{x\to +\infty }{\lim }B{({V_{\varepsilon }})^{2}}{\pi _{r}}(x)-\underset{x\to -\infty }{\lim }B{({V_{\varepsilon }})^{2}}{\pi _{r}}(x)=0\]
because ${\pi _{r}}$ has a bounded support, therefore
\[\begin{array}{r}\displaystyle {\int _{\mathbb{R}}}{({V_{\varepsilon }})^{2}}{\pi _{r}}\hspace{0.1667em}{d_{x}}B+{\int _{\mathbb{R}}}B{\pi _{r}}\hspace{0.1667em}{d_{x}}{({V_{\varepsilon }})^{2}}+{\int _{\mathbb{R}}}B{({V_{\varepsilon }})^{2}}\hspace{0.1667em}d{\pi _{r}}=0\\ {} \displaystyle \Leftrightarrow {\int _{\mathbb{R}}}B{\pi _{r}}{V_{\varepsilon }}\frac{\partial {V_{\varepsilon }}}{\partial x}\hspace{0.1667em}dx=-\frac{1}{2}{\int _{\mathbb{R}}}{({V_{\varepsilon }})^{2}}{\pi _{r}}\frac{\partial B}{\partial x}\hspace{0.1667em}dx-\frac{1}{2}{\int _{\mathbb{R}}}B{({V_{\varepsilon }})^{2}}{\pi ^{\prime }_{r}}\hspace{0.1667em}dx.\end{array}\]
We multiply (15) by ${V_{\varepsilon }}(t,x){\pi _{r}}(x)$, take the integral over $\mathbb{R}$, and get
\[\begin{array}{r}\displaystyle {\int _{\mathbb{R}}}{\mathcal{R}_{\varepsilon }}(B,{V_{\varepsilon }}){V_{\varepsilon }}{\pi _{r}}\hspace{0.1667em}dx=\frac{1}{2}{\int _{\mathbb{R}}}\frac{\partial {V_{\varepsilon }^{2}}}{\partial t}{\pi _{r}}\hspace{0.1667em}dx+{\int _{\mathbb{R}}}B{V_{\varepsilon }}{\pi _{r}}\frac{\partial {V_{\varepsilon }}}{\partial x}\hspace{0.1667em}dx\\ {} \displaystyle \Leftrightarrow {\int _{\mathbb{R}}}{\mathcal{R}_{\varepsilon }}(B,{V_{\varepsilon }}){V_{\varepsilon }}{\pi _{r}}\hspace{0.1667em}dx=\frac{1}{2}\frac{\partial }{\partial t}{\int _{\mathbb{R}}}{V_{\varepsilon }^{2}}{\pi _{r}}\hspace{0.1667em}dx-\frac{1}{2}{\int _{\mathbb{R}}}{({V_{\varepsilon }})^{2}}{\pi _{r}}\frac{\partial B}{\partial x}\hspace{0.1667em}dx\\ {} \displaystyle -\frac{1}{2}{\int _{\mathbb{R}}}B{({V_{\varepsilon }})^{2}}{\pi ^{\prime }_{r}}\hspace{0.1667em}dx.\end{array}\]
From (16) it follows that for fixed r and t
\[ {\int _{\mathbb{R}}}{\mathcal{R}_{\varepsilon }}(B,{V_{\varepsilon }}){V_{\varepsilon }}{\pi _{r}}\hspace{0.1667em}dx\to 0,\hspace{1em}\varepsilon \to 0.\]
Therefore,
(17)
\[\begin{array}{r}\displaystyle \underset{\varepsilon \to 0}{\lim }\Big(\frac{\partial }{\partial t}{\int _{\mathbb{R}}}{V_{\varepsilon }^{2}}{\pi _{r}}\hspace{0.1667em}dx-{\int _{\mathbb{R}}}{({V_{\varepsilon }})^{2}}{\pi _{r}}\frac{\partial B}{\partial x}\hspace{0.1667em}dx-{\int _{\mathbb{R}}}B{({V_{\varepsilon }})^{2}}{\pi ^{\prime }_{r}}\hspace{0.1667em}dx\Big)=0\\ {} \displaystyle \Leftrightarrow \frac{\partial }{\partial t}{\int _{\mathbb{R}}}{V^{2}}{\pi _{r}}\hspace{0.1667em}dx-{\int _{\mathbb{R}}}{V^{2}}{\pi _{r}}\frac{\partial B}{\partial x}\hspace{0.1667em}dx={\int _{\mathbb{R}}}B{V^{2}}{\pi ^{\prime }_{r}}\hspace{0.1667em}dx.\end{array}\]
Because ${\pi ^{\prime }_{r}}(x)=0$ for $|x|\le r$ or $|x|\ge 2r$, and $|{\pi ^{\prime }_{r}}|\le \frac{C}{r}$, we have
(18)
\[\begin{array}{r}\displaystyle \Big|{\int _{\mathbb{R}}}B{V^{2}}{\pi ^{\prime }_{r}}\hspace{0.1667em}dx\Big|\le \| V{\| _{{\mathsf{L}_{\infty }}}^{2}}{\int _{r\le |x|\le 2r}}\frac{|B(t,x)|}{1+|x|}(1+|x|)|{\pi ^{\prime }_{r}}(x)|\hspace{0.1667em}dx\to 0,\\ {} \displaystyle r\to \infty ,\end{array}\]
where convergence holds uniformly in t for each fixed ω.
In (18) we have used the following estimates. If ${\sup _{t}}|{\mu _{t}}|=M(\omega )$, then
\[\begin{array}{r}\displaystyle {\int _{r\le |x|\le 2r}}\frac{|B(t,x)|}{1+|x|}\hspace{0.1667em}dx\stackrel{y=x+{\mu _{t}}}{=}{\int _{r\le |y-{\mu _{t}}|\le 2r}}\frac{|b(t,y)|}{1+|y-{\mu _{t}}|}\hspace{0.1667em}dy\\ {} \displaystyle \le {\int _{|y|\ge r-M(\omega )}}\frac{|b(t,y)|}{1+|y|-M(\omega )}\hspace{0.1667em}dy\stackrel{\text{A5}}{\to }0,\hspace{1em}r\to \infty .\end{array}\]
Integrating (17) in t and taking into account that
\[ {\int _{\mathbb{R}}}{V^{2}}(t,x){\pi _{r}}(x)\hspace{0.1667em}dx\Big|{_{t=0}}={\int _{\mathbb{R}}}u{(0,x)^{2}}{\pi _{r}}(x)\hspace{0.1667em}dx=0,\]
we get
(19)
\[ {\int _{\mathbb{R}}}{V^{2}}{\pi _{r}}\hspace{0.1667em}dx={\int _{0}^{t}}{\int _{\mathbb{R}}}{V^{2}}{\pi _{r}}\frac{\partial B}{\partial x}\hspace{0.1667em}dx\hspace{0.1667em}ds+{\int _{0}^{t}}{\int _{\mathbb{R}}}B{V^{2}}{\pi ^{\prime }_{r}}\hspace{0.1667em}dx\hspace{0.1667em}ds.\]
Consider
\[ {g_{r}}(t,x)={V^{2}}(t,x){\pi _{r}}(x).\]
By A4, we have $\Big|\frac{\partial B}{\partial x}\Big|\le K$ for some constant K. From (19), we get
\[\begin{array}{r}\displaystyle {\int _{\mathbb{R}}}{g_{r}}(t,x)\hspace{0.1667em}dx\le {\int _{0}^{t}}{\int _{\mathbb{R}}}{g_{r}}(s,x)\Big|\frac{\partial B}{\partial x}\Big|\hspace{0.1667em}dx\hspace{0.1667em}ds+{R_{r}}\\ {} \displaystyle \le K{\int _{0}^{t}}{\int _{\mathbb{R}}}{g_{r}}(s,x)\hspace{0.1667em}dx\hspace{0.1667em}ds+{R_{r}},\\ {} \displaystyle {R_{r}}=\underset{t}{\sup }\Big|{\int _{0}^{t}}{\int _{\mathbb{R}}}B{V^{2}}{\pi ^{\prime }_{r}}\hspace{0.1667em}dx\hspace{0.1667em}ds\Big|\stackrel{\text{(18)}}{\to }0,\hspace{1em}r\to \infty .\end{array}\]
From the Gronwall inequality for $h(t)={\textstyle\int _{\mathbb{R}}}{g_{r}}(t,x)\hspace{0.1667em}dx$, we get
\[ {\int _{\mathbb{R}}}{g_{r}}(t,x)\hspace{0.1667em}dx\le {R_{r}}{e^{Kt}}.\]
Taking $r\to \infty $, we get
\[ {\int _{\mathbb{R}}}{g_{r}}(t,x)\hspace{0.1667em}dx\to {\int _{\mathbb{R}}}{V^{2}}\hspace{0.1667em}dx,\hspace{1em}{R_{r}}{e^{Kt}}\to 0\Rightarrow V=0\]
that finishes the proof of uniqueness of the solution.

Acknowledgement

The author is grateful to Prof. M. Zähle for fruitful discussions during the preparation of this paper and thanks the Friedrich Schiller University of Jena for its hospitality.

References

[1] 
Beck, L., Flandoli, F., Gubinelli, M., Maurelli, M.: Stochastic ODEs and stochastic linear PDEs with critical drift: regularity, duality and uniqueness. Electron. J. Probab. 24, 1–72 (2019). doi:https://doi.org/10.1214/19-EJP379. MR4040996
[2] 
Bodnarchuk, I.: Averaging principle for a stochastic cable equation. Mod. Stoch. Theory Appl. 7(4), 449–467 (2020). doi:https://doi.org/10.15559/20-VMSTA168. MR4195646
[3] 
Catuogno, P., Olivera, C.: ${L_{p}}$-solutions of the stochastic transport equation. Random Oper. Stoch. Equ. 21(2), 125–134 (2013). doi:https://doi.org/10.1515/rose-2013-0007. MR3068412
[4] 
DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547 (1989). doi:https://doi.org/10.1007/BF01393835. MR1022305
[5] 
Fang, S., Luo, D.: Flow of homeomorphisms and stochastic transport equations. Stoch. Anal. Appl. 25(5), 1079–1108 (2007). doi:https://doi.org/10.1080/07362990701540568. MR2352953
[6] 
Fedrizzi, E., Flandoli, F.: Noise prevents singularities in linear transport equations. J. Funct. Anal. 264(6), 1329–1354 (2013). doi:https://doi.org/10.1016/j.jfa.2013.01.003. MR3017266
[7] 
Flandoli, F., Gubinelli, M., Priola, E.: Well-posedness of the transport equation by stochastic perturbation. Invent. Math. 180(1), 1–53 (2010). doi:https://doi.org/10.1007/s00222-009-0224-4. MR2593276
[8] 
Maejima, M., Tudor, C.: Wiener integrals with respect to the Hermite process and a non-central limit theorem. Stoch. Anal. Appl. 25(5), 1043–1056 (2007). doi:https://doi.org/10.1080/07362990701540519. MR2352951
[9] 
Manikin, B.: Asymptotic properties of the parabolic equation driven by stochastic measure. Mod. Stoch. Theory Appl. 9(4), 483–498 (2022). doi:https://doi.org/10.15559/22-VMSTA213 MR4510384
[10] 
Manikin, B.: Averaging principle for the one-dimensional parabolic equation driven by stochastic measure. Mod. Stoch. Theory Appl. 9(2), 123–137 (2022). doi:https://doi.org/10.15559/21-VMSTA195. MR4420680
[11] 
Memin, T., Mishura, Y., Valkeila, E.: Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion. Stat. Probab. Lett. 51, 197–206 (2001). doi:https://doi.org/10.1016/S0167-7152(00)00157-7. MR1822771
[12] 
Mohammed, S.-E.A., Nilssen, T.K., Proske, F.N.: Sobolev differentiable stochastic flows for SDEs with singular coefficients: Applications to the transport equation. Ann. Probab. 43(3), 1535–1576 (2015). doi:https://doi.org/10.1214/14-AOP909. MR3342670
[13] 
Mucha, P.B.: Transport equation: Extension of classical results for $div\hspace{0.1667em}b\in BMO$. J. Differ. Equ. 249(8), 1871–1883 (2010). doi:https://doi.org/10.1016/j.jde.2010.07.015. MR2679007
[14] 
Neves, W., Olivera, C.: Initial-boundary value problem for stochastic transport equations. Stoch. Partial Differ. Equ., Anal. Computat. 9(3), 674–701 (2021). doi:https://doi.org/10.1007/s40072-020-00180-9. MR4297236
[15] 
Olivera, C., Tudor, C.: The density of the solution to the stochastic transport equation with fractional noise. J. Math. Anal. Appl. 431(1), 57–72 (2015). doi:https://doi.org/10.1016/j.jmaa.2015.05.030. MR3357574
[16] 
Proske, F.: The stochastic transport equation driven by Lévy white noise. Commun. Math. Sci. 2(4), 627–641 (2004). doi:https://doi.org/10.4310/CMS.2004.v2.n4.a4. MR2119931
[17] 
Protter, M.H., Morrey, C.B.J.: Intermediate Calculus. Springer, Berlin Heidelberg (2012)
[18] 
Radchenko, V.: Stratonovich-type integral with respect to a general stochastic measure. Stochastics 88, 1060–1072 (2016). doi:https://doi.org/10.1080/17442508.2016.1197924. MR3529860
[19] 
Radchenko, V.: Averaging principle for equation driven by a stochastic measure. Stochastics 91(6), 905–915 (2019). doi:https://doi.org/10.1080/17442508.2018.1559320. MR3985803
[20] 
Radchenko, V.: General Stochastic Measures: Integration, Path Properties, and Equations. Wiley – ISTE, London (2022)
[21] 
Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes. Chapman and Hall, London (1994). MR1280932
[22] 
Tudor, C.: Analysis of the Rosenblatt process. ESAIM Probab. Stat. 12, 230–257 (2008). doi:https://doi.org/10.1051/ps:2007037. MR2374640
[23] 
Tudor, C.: On the Wiener integral with respect to a sub-fractional Brownian motion on an interval. J. Math. Anal. Appl. 351(1), 456–468 (2009). doi:https://doi.org/10.1016/j.jmaa.2008.10.041. MR2472957
[24] 
Tudor, C.: Analysis of Variations for Self-similar Processes: A Stochastic Calculus Approach. Springer (2013). MR3112799
[25] 
Wei, J., Lv, G., Wang, W.: Stochastic transport equation with bounded and Dini continuous drift. J. Differ. Equ. 323, 359–403 (2022). doi:https://doi.org/10.1016/j.jde.2022.03.038. MR4404542
[26] 
Wei, J., Duan, J., Gao, H., Lv, G.: Stochastic regularization for transport equations. Stoch. Partial Differ. Equ., Anal. Computat. 9(1), 105–141 (2021). doi:https://doi.org/10.1007/s40072-020-00171-w. MR4218789
[27] 
Zähle, M.: Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Relat. Fields 111(3), 333–374 (1998). doi:https://doi.org/10.1007/s004400050171. MR1640795
[28] 
Zhang, X.: Stochastic flows of SDEs with irregular coefficients and stochastic transport equations. Bull. Sci. Math. 134(4), 340–378 (2010). doi:https://doi.org/10.1016/j.bulsci.2009.12.004. MR2651896
Exit Reading PDF XML


Table of contents
  • 1 Introduction
  • 2 Preliminaries
  • 3 The problem. Formulation of the main result
  • 4 Existence of the solution
  • 5 Uniqueness of the solution
  • Acknowledgement
  • References

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy