Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 10, Issue 2 (2023)
  4. Bernstein-type bounds for beta distribut ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Cited by
  • More
    Article info Full article Cited by

Bernstein-type bounds for beta distribution
Volume 10, Issue 2 (2023), pp. 211–228
Maciej Skorski ORCID icon link to view author Maciej Skorski details  

Authors

 
Placeholder
https://doi.org/10.15559/23-VMSTA223
Pub. online: 13 February 2023      Type: Research Article      Open accessOpen Access

Received
5 June 2022
Revised
5 February 2023
Accepted
6 February 2023
Published
13 February 2023

Abstract

This work obtains sharp closed-form exponential concentration inequalities of Bernstein type for the ubiquitous beta distribution, improving upon sub-Gaussian and sub-gamma bounds previously studied in this context.
The proof leverages a novel handy recursion of order 2 for central moments of the beta distribution, obtained from the hypergeometric representations of moments; this recursion is useful for obtaining explicit expressions for central moments and various tail approximations.

References

[1] 
Ben-Hamou, A., Boucheron, S., Ohannessian, M.I.: Concentration inequalities in the infinite urn scheme for occupancy counts and the missing mass, with applications. Bernoulli 23(1), 249–287 (2017). MR3556773. https://doi.org/10.3150/15-BEJ743
[2] 
Bernstein, S.: The theory of probabilities. Gastehizdat Publishing House, Moscow (1946).
[3] 
Boucheron, S., Lugosi, G., Bousquet, O.: Concentration inequalities. In: Summer School on Machine Learning, pp. 208–240 (2003). Springer.
[4] 
Castillo, I., et al.: Pólya tree posterior distributions on densities. In: Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, vol. 53, pp. 2074–2102 (2017). Institut Henri Poincaré. MR3729648. https://doi.org/10.1214/16-AIHP784
[5] 
Clark, C.E.: The pert model for the distribution of an activity time. Oper. Res. 10(3), 405–406 (1962).
[6] 
Dumbgen, L.: New goodness-of-fit tests and their application to nonparametric confidence sets. Ann. Stat. 26(1), 288–314 (1998). MR1611768. https://doi.org/10.1214/aos/1030563987
[7] 
Dutka, J.: The incomplete beta function—a historical profile. Arch. Hist. Exact Sci. 24(1), 11–29 (1981). MR0618150. https://doi.org/10.1007/BF00327713
[8] 
Elder, S.: Bayesian adaptive data analysis guarantees from subgaussianity. arXiv preprint arXiv:1611.00065 (2016).
[9] 
Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press (2009). https://doi.org/10.1017/CBO9780511801655
[10] 
Frankl, P., Maehara, H.: Some geometric applications of the beta distribution. Ann. Inst. Stat. Math. 42(3), 463–474 (1990). Available at: https://www.ism.ac.jp/editsec/aism/pdf/042_3_0463.pdf. MR1093963. https://doi.org/10.1007/BF00049302
[11] 
Gauss, C.F.: Disquisitiones generales circa seriem infinitam (1813).
[12] 
Gupta, A.K., Nadarajah, S.: Handbook of Beta Distribution and Its Applications. Statistics: A Series of Textbooks and Monographs. Taylor & Francis (2004). https://books.google.at/books?id=cVmnsxa-VzwC. MR2079703
[13] 
Henzi, A., Duembgen, L.: Some new inequalities for beta distributions. arXiv preprint arXiv:2202.06718 (2022).
[14] 
Hoeffding, W.: Probability inequalities for sums of bounded random variables. In: The Collected Works of Wassily Hoeffding, pp. 409–426 (1994). Springer. MR1307621
[15] 
Ibrahim, A.K.: Contiguous relations for 2f1 hypergeometric series. J. Egypt. Math. Soc. 20(2), 72–78 (2012). MR3011583. https://doi.org/10.1016/j.joems.2012.08.005
[16] 
Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, Volume 2 vol. 289. John wiley & sons (1995) MR1326603
[17] 
Jones, M.: On fractional uniform order statistics. Stat. Probab. Lett. 58(1), 93–96 (2002). MR1913312. https://doi.org/10.1016/S0167-7152(02)00119-0
[18] 
Kahane, J.-P.: Propriétés locales des fonctions à séries de fourier aléatoires. Stud. Math. 19(1), 1–25 (1960). MR0117506. https://doi.org/10.4064/sm-19-1-1-25
[19] 
Kim, B.-c., Reinschmidt, K.F.: Probabilistic forecasting of project duration using bayesian inference and the beta distribution. J. Constr. Eng. Manage. 135(3), 178–186 (2009).
[20] 
Kipping, D.M.: Parametrizing the exoplanet eccentricity distribution with the beta distribution. Mon. Not. R. Astron. Soc. Lett. 434(1), 51–55 (2013).
[21] 
Marchal, O., Arbel, J., et al.: On the sub-gaussianity of the beta and dirichlet distributions. Electron. Commun. Probab. 22 (2017). MR3718704. https://doi.org/10.1214/17-ECP92
[22] 
Maurer, A., Pontil, M.: Concentration inequalities under sub-gaussian and sub-exponential conditions. In: Advances in Neural Information Processing Systems 34 (2021).
[23] 
Meurer, A., Smith, C.P., Paprocki, M., Čertík, O., Kirpichev, S.B., Rocklin, M., Kumar, A., Ivanov, S., Moore, J.K., Singh, S., Rathnayake, T., Vig, S., Granger, B.E., Muller, R.P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., Curry, M.J., Terrel, A.R., Roučka, v., Saboo, A., Fernando, I., Kulal, S., Cimrman, R., Scopatz, A.: Sympy: symbolic computing in python. PeerJ Comput. Sci. 3, 103 (2017). https://doi.org/10.7717/peerj-cs.103
[24] 
Mitov, K., Nadarajah, S.: Beta distributions in stochastic processes. In: Statistics Textbooks and Monographs 174, pp. 165–202 (2004). MR2079709
[25] 
Mühlbach, G.v.: Rekursionsformeln für die zentralen momente der pólya-und der beta-verteilung. Metrika 19(1), 171–177 (1972). MR0375563. https://doi.org/10.1007/BF01893292
[26] 
Perry, A., Wein, A.S., Bandeira, A.S., et al.: Statistical limits of spiked tensor models. In: Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, vol. 56, pp. 230–264 (2020). Institut Henri Poincaré. MR4058987. https://doi.org/10.1214/19-AIHP960
[27] 
Skórski, M.: Bernstein Bounds for Beta Distribution. OSF (2023). https://doi.org/10.17605/OSF.IO/YSVDH
[28] 
Stucchio, C.: Bayesian a/b testing at vwo. Whitepaper, Visual Website Optimizer (2015).
[29] 
Vidūnas, R.: Contiguous relations of hypergeometric series. J. Comput. Appl. Math. 153(1-2), 507–519 (2003). MR1985719. https://doi.org/10.1016/S0377-0427(02)00643-X
[30] 
Wainwright, M.J.: High-dimensional Statistics: A Non-asymptotic Viewpoint vol. 48. Cambridge University Press (2019) MR3967104. https://doi.org/10.1017/9781108627771
[31] 
Williams, D.: 394: The analysis of binary responses from toxicological experiments involving reproduction and teratogenicity. Biometrics 31(4), 949–952 (1975).
[32] 
Wolfram, M.: www.functions.wolfram.com/HypergeometricFunctions (2020).
[33] 
Zhang, A.R., Zhou, Y.: On the non-asymptotic and sharp lower tail bounds of random variables. Stat 9(1), 314 (2020). MR4193419. https://doi.org/10.1002/sta4.314
[34] 
Zhang, J., Wu, Y.: Beta approximation to the distribution of Kolmogorov-Smirnov statistic. Ann. Inst. Stat. Math. 54(3), 577–584 (2002). MR1932402. https://doi.org/10.1023/A:1022463111224

Full article Cited by PDF XML
Full article Cited by PDF XML

Copyright
© 2023 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Beta distribution concentration bounds Bernstein inequality

MSC2010
60E05

Metrics
since March 2018
539

Article info
views

538

Full article
views

570

PDF
downloads

114

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy