Multi-mixed fractional Brownian motions and Ornstein–Uhlenbeck processes
Volume 10, Issue 4 (2023), pp. 343–366
Pub. online: 26 June 2023
Type: Research Article
Open Access
Received
29 January 2023
29 January 2023
Revised
24 May 2023
24 May 2023
Accepted
26 May 2023
26 May 2023
Published
26 June 2023
26 June 2023
Abstract
The so-called multi-mixed fractional Brownian motions (mmfBm) and multi-mixed fractional Ornstein–Uhlenbeck (mmfOU) processes are studied. These processes are constructed by mixing by superimposing or mixing (infinitely many) independent fractional Brownian motions (fBm) and fractional Ornstein–Uhlenbeck processes (fOU), respectively. Their existence as ${L^{2}}$ processes is proved, and their path properties, viz. long-range and short-range dependence, Hölder continuity, p-variation, and conditional full support, are studied.
References
Abramowitz, M., Stegun, I.A., Romer, R.H.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. American Association of Physics Teachers (1988). MR0415962
Azmoodeh, E., Sottinen, T., Viitasaari, L., Yazigi, A.: Necessary and sufficient conditions for Hölder continuity of Gaussian processes. Stat. Probab. Lett. 94, 230–235 (2014). doi:https://doi.org/10.1016/j.spl.2014.07.030. MR3257384
Barboza, L.A., Viens, F.G.: Parameter estimation of Gaussian stationary processes using the generalized method of moments. Electron. J. Stat. 11(1), 401–439 (2017). https://doi.org/10.1214/17-EJS1230. MR3611508
Bender, C., Sottinen, T., Valkeila, E.: Arbitrage with fractional Brownian motion? Theory Stoch. Process. 13(1-2), 23–34 (2007). MR2343807 (2008d:91038)
Bender, C., Sottinen, T., Valkeila, E.: Pricing by hedging and no-arbitrage beyond semimartingales. Finance Stoch. 12(4), 441–468 (2008). https://doi.org/10.1007/s00780-008-0074-8. MR2447408 (2009j:91078)
Biagini, F., Hu, Y., Øksendal, B., Zhang, T.: Stochastic Calculus for Fractional Brownian Motion and Applications. Probability and its Applications (New York), p. 329. Springer (2008). https://doi.org/10.1007/978-1-84628-797-8. MR2387368 (2010a:60145)
Cheridito, P.: Mixed fractional Brownian motion. Bernoulli 7(6), 913–934 (2001). https://doi.org/10.2307/3318626. MR1873835
Cheridito, P., Kawaguchi, H., Maejima, M.: Fractional Ornstein-Uhlenbeck processes. Electron. J. Probab. 8, 3–14 (2003). https://doi.org/10.1214/EJP.v8-125. MR1961165 (2003m:60096)
Doob, J.L.: The Brownian movement and stochastic equations. Ann. Math. (2) 43, 351–369 (1942). MR0006634
Dudley, R.M., Norvaiša, R.: Differentiability of Six Operators on Nonsmooth Functions and p-variation. Lecture Notes in Mathematics, vol. 1703, p. 277. Springer (1999). With the collaboration of Jinghua Qian. MR1705318 (2000e:46053)
Gasbarra, D., Sottinen, T., Van Zanten, H.: Conditional full support of gaussian processes with stationary increments. J. Appl. Probab. 48(2), 561–568 (2011) MR2840316. https://doi.org/10.1239/jap/1308662644
Gelfand, I., Shilov, G.: Generalized Functions, Vol. 1. Academic Press, New York (1964) MR0166596
Houdré, C., Villa, J.: An example of infinite dimensional quasi-helix. In: Stochastic Models (Mexico City, 2002). Contemp. Math., vol. 336, pp. 195–201. Amer. Math. Soc., Providence, RI (2003). https://doi.org/10.1090/conm/336/06034. MR2037165 (2004m:60077)
Hu, Y., Nualart, D.: Parameter estimation for fractional Ornstein–Uhlenbeck processes. Stat. Probab. Lett. 80(11-12), 1030–1038 (2010). MR2638974. https://doi.org/10.1016/j.spl.2010.02.018
Kalemkerian, J.: Modelling and parameter estimation for discretely observed fractional iterated ornstein–uhlenbeck processes. J. Stat. Plan. Inference 225, 29–51 (2023). MR4516401. https://doi.org/10.1016/j.jspi.2022.11.004
Kalemkerian, J., Sosa, A.: Long-range dependence in the volatility of returns in uruguayan sovereign debt indices. J. Dyn. Games 7(3), 225 (2020). MR4128827. https://doi.org/10.3934/jdg.2020016
Kolmogoroff, A.N.: Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. C. R. (Dokl.) Acad. Sci. URSS 26, 115–118 (1940). MR0003441 (2,220c)
Kubilius, K., Mishura, Y., Ralchenko, K.: Parameter Estimation in Fractional Diffusion Models, Vol. 8. Springer (2017). MR3752152. https://doi.org/10.1007/978-3-319-71030-3
Lévy-Véhel, J.: Fractal approaches in signal processing. Fractals 3, 755–775 (1995). Symposium in Honor of Benoit Mandelbrot (Curaçao, 1995). https://doi.org/10.1142/S0218348X95000679. MR1410294
Maleki Almani, H., Hosseini, S.M., Tahmasebi, M.: Fractional Brownian motion with two-variable Hurst exponent. J. Comput. Appl. Math. 388, 113262 (2021). https://doi.org/10.1016/j.cam.2020.113262. MR4199791
Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968). MR0242239
Mishura, Y.S.: Stochastic Calculus for Fractional Brownian Motion and Related Processes. Lecture Notes in Mathematics, Vol. 1929. Springer (2008), 393 pp. https://doi.org/10.1007/978-3-540-75873-0. MR2378138 (2008m:60064)
Perrin, E., Harba, R., Berzin-Joseph, C., Iribarren, I., Bonami, A.: nth-order fractional brownian motion and fractional gaussian noises. IEEE Trans. Signal Process. 49(5), 1049–1059 (2001). https://doi.org/10.1109/78.917808
Perrin, E., Harba, R., Iribarren, I., Jennane, R.: Piecewise fractional Brownian motion. IEEE Trans. Signal Process. 53(3), 1211–1215 (2005). https://doi.org/10.1109/TSP.2004.842209. MR2123915
Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Stochastic Modeling Series. Taylor & Francis (1994). https://books.google.fi/books?id=wTTUfYwjksAC. MR1280932
Sottinen, T.P.: Fractional Brownian Motion in Finance and Queueing, p. 120 (2003). Thesis (Ph.D.)–Helsingin Yliopisto (Finland). MR2715575
Zili, M.: On the mixed fractional Brownian motion. J. Appl. Math. Stoch. Anal. 2006, 032435 (2006). https://doi.org/10.1155/JAMSA/2006/32435. MR2253522